Citation: | FENG Kehao, LI Baiping, CAI Yijun, ZHOU Yuanguo. Inverse design of metamaterial structure based on AdaBelief residual neural network[J]. LASER TECHNOLOGY, 2022, 46(3): 307-311. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.003 |
[1] |
TAN T, JIANG X, WANG C, et al. 2D material optoelectronics for information functional device applications: Status and challenges[J]. Advanced Science, 2020, 7(11): 2000058. DOI: 10.1002/advs.202000058
|
[2] |
RESERBAT-PLANTEY A, EPSTEIN I, TORRE I, et al. Quantum nano-photonics in two-dimensional materials[J]. ACS Photonics, 2021, 8(1): 85-101. DOI: 10.1021/acsphotonics.0c01224
|
[3] |
LI X, SUN T, ZHOU K, et al. Broadband InSb/Si hetero junction photodetector with graphene transparent electrode[J]. Nanotechnology, 2020, 31(31): 315204. DOI: 10.1088/1361-6528/ab884c
|
[4] |
STANFORD M G, ZHANG C, FOWLKES J D, et al. High-resolution laser-induced graphene. Flexible electronics beyond the visible limit[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10902-10907.
|
[5] |
TAN T, YUAN Zh Y, CHEN Y F. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170613(in Chinese).
|
[6] |
NIU H S, ZHU L Q, LIU K M. Design method of bernal-stacked bilayer graphene 1.06μm resonance-enhanced photodetector[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 93-98(in Chinese).
|
[7] |
POLYCARPOU A C. Introduction to the finite element method in electromagnetics[J]. Synthesis Lectures on Computational Electromagnetics, 2005, 1(1): 1-126.
|
[8] |
GEDNEY S D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics[J]. Synthesis Lectures on Computational Electromagnetics, 2011, 6(1): 1-250. DOI: 10.2200/S00316ED1V01Y201012CEM027
|
[9] |
ZHAN T, SHI X, DAI Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics, 2013, 25(21): 215301.
|
[10] |
KAYA M, HAJIMIRZA S. Nonparametric design of nanoparticles with maximum scattering using evolutionary topology optimization[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120738. DOI: 10.1016/j.ijheatmasstransfer.2020.120738
|
[11] |
SONG Y, WANG F, CHEN X. An improved genetic algorithm for numerical function optimization[J]. Applied Intelligence, 2019, 49(5): 1880-1902. DOI: 10.1007/s10489-018-1370-4
|
[12] |
KAO C Y, OSHER S, YABLONOVITCH E. Maximizing band gaps in two-dimensional photonic crystals by using level set methods[J]. Applied Physics, 2005, B81(2): 235-244.
|
[13] |
GUAN Sh H, YANG G, LI H, et al. Hyperspectral image classification based on 3-D convolutional recurrent neural network[J]. Laser Technology, 2020, 44(4): 91-97(in Chinese).
|
[14] |
ZHANG C P, MA Y, MAO T, et al. Leukocyte recognition oriented to computer micro-vision system[J]. Laser Technology, 2020, 44(1): 125-129(in Chinese).
|
[15] |
MORABITO A F, IERACITANO C, MORABITO F C. A machine-learning and compressive-sensing inspired approach to the optimal array pattern synthesis[C]//2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring). New York, USA: IEEE, 2019: 2891-2898.
|
[16] |
LIU D, TAN Y, KHORAM E, et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics, 2018, 5(4): 1365-1369. DOI: 10.1021/acsphotonics.7b01377
|
[17] |
SEIF-DARGAHI H. Ultra-fast all-optical encoder using photonic crystal-based ring resonators[J]. Photonic Network Communications, 2018, 36(2): 272-277. DOI: 10.1007/s11107-018-0779-3
|
[18] |
MA W, CHENG F, LIU Y. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. DOI: 10.1021/acsnano.8b03569
|
[19] |
BOR E, ALPARSLAN O, TURDUEV M, et al. Integrated silicon photonic device design by attractor selection mechanism based on artificial neural networks: Optical coupler and asymmetric light transmitter[J]. Optics Express, 2018, 26(22): 29032-29044. DOI: 10.1364/OE.26.029032
|
[20] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 770-778.
|