[1]
|
KNEIPP J, KNEIPP H, KNEIPP K. SERS-a single-molecule and nanoscale tool for bioanalytics [J]. Chemical Society Reviews, 2008, 37 (5):1052-1060. doi: 10.1039/b708459p |
[2]
|
KIRALY B, YANG S, HUANG T J. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering[J]. Nanotechnology, 2013, 24(24):245704. doi: 10.1088/0957-4484/24/24/245704 |
[3]
|
STILES P L, DIERINGER J A, SHAH N C, et al. Surface-enhanced Raman spectroscopy[J]. Annual Review of Analytical Chemistry, 2008, 1(7):601-626. |
[4]
|
ZHANG C, LI C, YU J, et al. SERS activated platform with three-dimensional hot spots and tunable nanometer gap[J]. Sensors and Actuators, 2018, B258:163-171. |
[5]
|
ZHANG C, LI Z, JIANG S Z, et al. U-bent fiber optic SPR sensor based on graphene/AgNPs[J]. Sensors & Actuators, 2017, B251:127-133. |
[6]
|
ESTEBAN R, BORISOV A G, NORDLANDER P, et al. Bridging quantum and classical plasmonics with a quantum-corrected model[J]. Nature Communications, 2012, 3(5):825. |
[7]
|
BANIK M, APKARIAN V A, PARK T H, et al. Raman staircase in charge transfer SERS at the junction of fusing nanospheres[J]. The Journal of Physical Chemistry Letters, 2013, 4(1):88-92. |
[8]
|
PERSSON B N, ZHAO K, ZHANG Z. Chemical contribution to surface-enhanced Raman scattering[J]. Physical Review Letters, 2006, 96(20): 207401. doi: 10.1103/PhysRevLett.96.207401 |
[9]
|
CHEN J, MARTENSSON T, DICK K A, et al. Surface-enhanced Raman scattering of rhodamine 6G on nanowire arrays decorated with gold nanoparticles.[J]. Nanotechnology, 2008, 19(27):275712. doi: 10.1088/0957-4484/19/27/275712 |
[10]
|
JIN L, SHE G, WANG X, et al. Enhancing the SERS performance of semiconductor nanostructures through a facile surface engineering strategy[J]. Applied Surface Science, 2014, 320:591-595. doi: 10.1016/j.apsusc.2014.09.120 |
[11]
|
KHORASANINEJAD M, RAEISZADEH S M, JAFARLOU S, et al. Highly enhanced raman scattering of graphene using plasmonic nano-structure[J]. Scientific Reports, 2013, 3:2936. doi: 10.1038/srep02936 |
[12]
|
XU W, LING X, XIAO J, et al. Surface enhanced Raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences, 2012, 109(24):9281-9286. doi: 10.1073/pnas.1205478109 |
[13]
|
CRAMPTON K T, ZEYTUNYAN A, FAST A S, et al. Ultrafast coherent raman scattering at plasmonic nanojunctions[J]. Journal of Physical Chemistry, 2016, C120(37):20943-20953. |
[14]
|
GAO C B, HU Y X, WANG M S, et al. Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au[J]. Journal of the American Chemical Society, 2014, 136(20):7474-7479. doi: 10.1021/ja502890c |
[15]
|
LI C, YANG C, XU S, et al. Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate[J]. Journal of Alloys & Compounds, 2017, 695:1677-1684. |
[16]
|
IONESCU R E, AYBEKE E N, BOURILLOT E, et al. Fabrication of annealed gold nanostructures on pre-treated glow-discharge cleaned glasses and their used for LSPR and SERS detection of adsorbed (bio)molecules[J]. Sensors, 2017, 17(2):E236. doi: 10.3390/s17020236 |
[17]
|
ZHANG F, BRAUN G B, SHI Y, et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [J]. Journal of the American Chemical Society, 2010, 132 (9):2850-2851. doi: 10.1021/ja909108x |
[18]
|
ZHANG W, MAN P, WANG M, et al. Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS[J]. Carbon, 2018, 133:300-305. doi: 10.1016/j.carbon.2018.03.050 |
[19]
|
YANG C, ZHANG C, HUO Y, et al. Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS[J]. Carbon, 2016, 98:526-533. doi: 10.1016/j.carbon.2015.11.042 |