Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 47 Issue 1
Jan.  2023
Article Contents
Turn off MathJax

Citation:

Plasmonic Fano resonance based on the graphene nanosheet array

  • Received Date: 2021-12-28
    Accepted Date: 2022-01-26
  • In order to obtain strong multiple Fano resonances, a metasurface composed of asymmetric nanosheet heterodimer was designed in the paper. Based on the finite element analysis method, the physical mechanism of Fano resonances was analyzed by the hybridization theory, and the different Fano responses resulted from different Fermi levels, structures parameters were analyzed. Results show that when the Fermi level of the graphene nanosheet increases, the Fano resonance peaks blue shift, and the intensity of graphene responses is enhanced, which causes that the local effect and absorption are enhanced accordingly. At the same time, with the increase of the asymmetry of the size and position of the nanosheet heterodimer, the asymmetry of Fano resonances also increases. The Fano resonances based on the simply graphene nanosheet heterodimer array are expected to be widely used in biosensor and related fields. The study provides theoretical reference for further experimental research.
  • 加载中
  • [1]

    MAIER S A, ATWATER H A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures[J]. Journal of Applied Physics, 2005, 98(1): 011101. doi: 10.1063/1.1951057
    [2]

    LEE H, LEE J H, JIN S M, et al. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering[J]. Nano Letters, 2013, 13(12): 6113-6121. doi: 10.1021/nl4034297
    [3]

    TSAI W Y, HUANG J S, HUANG C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmo-nic archimedes spiral[J]. Nano Letters, 2014, 14(2): 547-552. doi: 10.1021/nl403608a
    [4]

    PILO-PAIS M, WATSON A, DEMERS S, et al. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures[J]. Nano Letters, 2014, 14(4): 2099-2104. doi: 10.1021/nl5003069
    [5]

    HWANG Y, HOPKINS B, WANG D, et al. Optical chirality from dark-field illumination of planar plasmonic nanostructures[J]. Laser & Photonics Reviews, 2017, 11(6): 1700216.
    [6]

    PANARO S, NAZIR A, LIBERALE C, et al. Dark to bright mode conversion on dipolar nanoantennas: A symmetry-breaking approach[J]. ACS Photonics, 2014, 1(4): 310-314. doi: 10.1021/ph500044w
    [7]

    FAN J A, BAO K, WU C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 2010, 10(11): 4680-4685. doi: 10.1021/nl1029732
    [8]

    LIU Sh D, YANG Y B, CHEN Zh H, et al. Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. The Journal of Physical Chemistry C, 2013, 117(27): 14218-14228. doi: 10.1021/jp404575v
    [9]

    CHENG F, LIU H F, LI B H, et al. Tuning asymmetry parameter of Fano resonance of spoof surface plasmons by modes coupling[J]. A-pplied Physics Letters, 2012, 100(13): 131110. doi: 10.1063/1.3698117
    [10]

    NGUYEN T K, LE T D, DANG P T, et al. Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation[J]. Journal of the Optical Society of America B, 2017, 34(3): 668-672. doi: 10.1364/JOSAB.34.000668
    [11]

    ZHANG S, BAO K, HALAS N J, et al. Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 2011, 11(4): 1657-1663. doi: 10.1021/nl200135r
    [12]

    HU L, HUANG Y, FANG L, et al. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality[J]. Scientific Reports, 2015, 5(10): 16069.
    [13]

    KOPPENS F H L, CHANG D E, de ABAJO F J G. Graphene plasmonics: A platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377. doi: 10.1021/nl201771h
    [14]

    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758. doi: 10.1038/nphoton.2012.262
    [15]

    JABLAN M, BULJAN H, SOLJAČIC' M. Plasmonics in graphene at infrared frequencies[J]. Physical Review, 2009, B80(24): 245435.
    [16]

    SHI C, HE X, PENG J, et al. Tunable terahertz hybrid graphene-metal patterns metamaterials[J]. Optics & Laser Technology, 2019, 114: 28-34.
    [17]

    ZHAO B, ZHANG Z M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J]. ACS Photonics, 2015, 2(11): 1611-1618. doi: 10.1021/acsphotonics.5b00410
    [18]

    EMANI N K, CHUNG T F, NI X, et al. Electrically tunable damping of plasmonic resonances with graphene[J]. Nano Letters, 2012, 12(10): 5202-5206. doi: 10.1021/nl302322t
    [19]

    WANG X, MENG H, DENG S, et al. Hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface[J]. Nanomaterials, 2019, 9(3): 385. doi: 10.3390/nano9030385
    [20] 武继江, 高金霞. 金属-石墨烯光子晶体-金属结构的吸收特性[J]. 激光技术, 2019, 43(5): 614-618.

    WU J J, GAO J X. Absorption characteristics of metal-graphene photonic crystal-metal structures[J]. Laser Technology, 2019, 43(5): 614-618 (in Chinese).
    [21]

    RODRIGO D, TITTL A, LIMAJ O, et al. Double-layer graphene for enhanced tunable infrared plasmonics[J]. Light: Science & Applications, 2017, 6(6): e16277.
    [22]

    BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. doi: 10.1021/nl400601c
    [23]

    ASGARI S, GRANPAYEH N. Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layer[J]. IEEE Sensors Journal, 2019, 19(14): 5686-5691. doi: 10.1109/JSEN.2019.2906759
    [24] 李从午, 卞立安. 基于F-P谐振与SPP共振的石墨烯双模吸收波体设计[J]. 激光技术, 2021, 45(4): 507-510.

    LI C W, BIAN L A. Design of graphene double-mode absorber based on F-B resonance and SPP resonance[J]. Laser Technology, 2021, 45(4): 507-510 (in Chinese).
    [25]

    ZHOU C, LIU G, BAN G, et al. Tunable Fano resonator using multilayer graphene in the near-infrared region[J]. Applied Physics Letters, 2018, 112(10): 101904. doi: 10.1063/1.5020576
    [26]

    WANG K, FAN W H, CHEN X, et al. Graphene based polarization independent Fano resonance at terahertz for tunable sensing at nanoscale[J]. Optics Communications, 2019, 439(5): 61-65.
    [27]

    LIMA J R F, BARBOSA A L R, BEZERRA C G, et al. Tuning the Fano factor of graphene via Fermi velocity modulation[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 97(3): 105-110.
    [28] 卞立安, 刘培国, 陈雨薇, 等. 石墨烯介质堆栈提高系统调控Fano共振能力[J]. 激光技术, 2018, 42(2): 187-191.

    BIAN L A, LIU P G, CHEN Y W, et al. Improvement of system tunability for Fano resonance by graphene-dielectric stack[J]. Laser Technology, 2018, 42(2): 187-191 (in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article views(4166) PDF downloads(23) Cited by()

Proportional views

Plasmonic Fano resonance based on the graphene nanosheet array

  • School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China

Abstract: In order to obtain strong multiple Fano resonances, a metasurface composed of asymmetric nanosheet heterodimer was designed in the paper. Based on the finite element analysis method, the physical mechanism of Fano resonances was analyzed by the hybridization theory, and the different Fano responses resulted from different Fermi levels, structures parameters were analyzed. Results show that when the Fermi level of the graphene nanosheet increases, the Fano resonance peaks blue shift, and the intensity of graphene responses is enhanced, which causes that the local effect and absorption are enhanced accordingly. At the same time, with the increase of the asymmetry of the size and position of the nanosheet heterodimer, the asymmetry of Fano resonances also increases. The Fano resonances based on the simply graphene nanosheet heterodimer array are expected to be widely used in biosensor and related fields. The study provides theoretical reference for further experimental research.

引言
  • 表面等离激元(surface plasmons,SP)是指在入射光激发下金属和介质界面处自由电子的集体振荡与电磁波的耦合模式,其在金属表面的电磁场能量束缚特性给金属表面带来了巨大的局域电磁场增强,从而具有很多独特的光学特性,被广泛地应用到生物传感、光学成像、医学检测等领域[1-5]。但表面等离激元共振辐射和吸收损耗大,为了有效地降低能量损耗,研究者们设计各种不同结构的纳米材料以获得表面等离激元法诺共振。等离激元法诺共振是由明模和暗模相干而形成的,其系统辐射衰减可以有效地被抑制,从而形成较窄线宽的谱线;且其入射场能量可以更好地局域在纳米结构表面附近,因此具有更强的局域电场增强;同时,法诺共振由于其传感灵敏度高,被广泛应用于生物传感等领域[6-12]

    近年来,人们对石墨烯的认识不断深入,研究发现,石墨烯表面等离激元有着良好的光电性能,其共振频率可以通过调节外部电压和掺杂等进行动态调节,响应波段从红外到太赫兹波段,而中红外波段正是热生物成像和许多生物分子链振动波段,这使其在生物化学传感等领域有着广泛的应用[13-15]。与此同时,相对传统的金属表面等离激元,石墨烯表面等离激元还具有低成本、低损耗、高局域和可动态调节等优势。因此,研究者们结合石墨烯和传统的金属纳米结构,以拓展表面等离激元的响应范围[16-20];同时设计了不同结构的石墨烯纳米带、纳米盘等,在中-远红外和太赫兹波段获得表面等离激元响应[21-24]。也有部分利用石墨烯对表面等离激元法诺共振进行调节的研究[25-28],但直接采用简单的石墨烯纳米结构以获得可调谐多阶法诺共振的研究并不多见。

    本文中设计结构简单、制作方便的非对称纳米片二聚体阵列以获得强烈的多阶法诺共振,在数值模拟的基础上,利用杂化理论分析了法诺共振形成的物理机理,同时分析了费米能级对多阶法诺共振的影响,以及石墨烯纳米片二聚体阵列的结构及相对位置对法诺共振的线型及强弱的影响,为进一步实验提供有效的理论参考。

1.   物理模型
  • 本文中采用长度不同的非对称矩形石墨烯纳米片二聚体(分别表示为Ⅰ和Ⅱ)为阵列单元,如图 1a图 1b所示。两纳米片的宽度均为25 nm,长度分别为L1L2,中间间隔为5 nm;两个纳米片错位放置,底边错开的长度设为a;纳米片二聚体成周期性分布,xy方向的周期长均为100 nm。石墨烯纳米片沉积在基底上,如图 1b所示,基底的介电常量设为εs=3.9。整个模型置于空气中(εm=1.0)。而石墨烯纳米片,作为单原子层材料,当它和电磁场作用时,可以用表面电流密度来进行描述:

    式中,σg是石墨烯的表面电导率,E//是平行于石墨烯平面的电场。石墨烯的表面电导率σg由带间电导率σintra和带内电导率σinter两部分构成,分别对应石墨烯的带间和带内光电子散射,其表达式为:

    其中:

    当$\hbar \omega \gg k_{\mathrm{B}} t$和$\left|E_{\mathrm{F}}\right| \gg k_{\mathrm{B}} t$时,σinter可表示为:

    式中,e为电子电荷,kB为玻尔兹曼常数,EF为费米能级,τ为弛豫时间,取τ=4 ps,$\hbar$为约化普朗克常量,ω为角频率,温度t=300 K。

    为了详细分析石墨烯纳米片二聚体阵列与电磁波的相互作用,本文中利用有限元分析法进行数值模拟。光吸收率为A=1-T-R,其中T为透射率,R为反射率。当偏振方向为x方向的线偏光沿着-z方向射向石墨烯纳米片二聚体阵列时,产生强烈的表面等离激元法诺共振,如图 1c图 1d图 1e所示。由图可知,在中红外波段出现4个明显的非对称法诺共振峰,其中,图 1c为反射谱,图 1d为透射谱, 图 1e为吸收谱。

    Figure 1.  a—structure and parameters of graphene nanosheet heterodimer  b—schematic of each cell unite  c~e—the resonance spectra of the graphene nanosheet heterodimer array excited with x-polarized incident light (L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV)

2.   结果及讨论
  • 为了详细分析石墨烯纳米片二聚体阵列产生多阶法诺共振的物理机制,对比分析了两个单独的纳米片(Ⅰ和Ⅱ)和纳米片二聚体(Ⅰ-Ⅱ)与电磁波的相互作用,如图 2所示。为了简化,这里以纳米片阵列与电磁波相互作用产生的反射谱为例进行说明。如图 2a所示,偏振方向为x的线偏光沿-z方向入射,线偏光与短纳米片Ⅰ相互作用时,除了一个强烈的偶极共振峰以外,旁边还有一个很小的非对称峰,这是纳米片横向偶极共振模式受纵向模式干扰的结果。以相同的入射光激发长纳米片Ⅱ时, 如图 2b所示,只有一个对称的偶极共振峰。当把两个纳米片放在一起组成纳米片二聚体时,由于两个纳米片之间的相互耦合作用,产生了4个明显的非对称峰(分别表示为1~4),如图 2c所示。为了进一步分析两个纳米片的相互作用,图 3图 4中分别给出了图 2c中4个共振波长激发下的纳米片二聚体表面电荷分布及电场分布。由图 3a图 3b可知,共振峰1和共振峰2为纳米片Ⅱ的偶极子和纳米片Ⅰ的等效偶极子相互耦合而成。由于共振峰1对应的纳米片Ⅱ的上面部分电荷密度比下面部分电荷密度大,因此,在纳米片Ⅰ与纳米片Ⅱ相邻部分,由纳米片Ⅱ感应的电荷分布主要集中在纳米片Ⅰ的中间部分,如图 3a所示;同时,由图 4a中的电场分布可知,两纳米片间电场集中分布在二聚体的中间部分。而共振峰2对应的则刚好相反,纳米片Ⅱ中的表面电荷密度下面比上面大,因此,纳米片Ⅰ的中间部分对应的感应电荷密度小,电荷主要集中在纳米片Ⅰ的两头(见图 3b);同时,相互作用场也集中在两纳米片的底部,如图 4b所示。共振峰3和共振峰4均为纳米片Ⅱ的偶极模式与纳米片Ⅰ的等效四极模式耦合而成,其中峰3对应的纳米片Ⅰ的等效四极模式与纳米片Ⅱ的偶极模式的绑定模式(见图 3c),而峰4所对应则为纳米片Ⅰ的等效四极模式与纳米片Ⅱ的反绑定模式(见图 3d);由电场分布图 4c图 4d可以看出,峰3对应的电场分布主要集中在二聚体的下半部分,而峰4对应的纳米片Ⅰ的电场分布在4个顶点附近。综合以上表面电荷和电场分布可知,峰1和峰4是暗态模式,而峰2和峰3是亮态模式,而暗态模式和亮态模式干涉叠加形成了非对称法诺共振。

    Figure 2.  Reflection spectra of nanosheet and nanosheet heterodimer (L1=70 nm, L2=40 nm, a=0 nm, EF=0.5 eV) excited with x-polarized incident light

    Figure 3.  Surface charge density distributions of the four hybridized plasmonic modes in Fig. 2c

    Figure 4.  Electric field distributions of the four hybridized plamonic modes in Fig. 2c

  • 石墨烯的表面等离激元共振可以通过电学掺杂和化学掺杂等方式对其性能进行调控。在中红外波段,石墨烯的表面等离激元共振频率正比于费米能级。如图 5a~图 5d所示,随着费米能级的增加,法诺共振线型保持不变,但反射峰明显蓝移;同时,反射率随着费米能级的增加而增加。因为随着费米能级的增加,石墨烯表面的电子增多。和入射光相互作用时,石墨烯表面的等离激元共振增强,对应的吸收强度也随之增强,如图 5e~图 5h所示。由图 5可知,随着波段不断向短波方向移动,还出现了更高阶的法诺共振,但其强度相对较弱,不在本文中做讨论。因此,此纳米片二聚体阵列的表面等离激元法诺共振波长及强度可以通过费米能级进行调控。

    Figure 5.  Reflection spectra and absorption spectra with different Fermi levels EF (L1=70 nm, L2=40 nm, a=0 nm)

  • 众所周知,纳米结构的构型直接影响表面等离激元的共振特性,因此会进而影响表面等离激元法诺共振。此处,作者研究了纳米片二聚体中纳米片Ⅰ保持不变、纳米片Ⅱ的长度L2改变对表面等离激元法诺共振的影响。如图 6所示,当L2=20 nm时,两纳米片的相互耦合很弱,只有两个相隔很远的近似对称的共振峰(见图 6f);当L2从20 nm增加到40 nm时,两纳米片的相互作用逐渐加强,法诺共振的非对称性也越明显。随着L2进一步从40 nm增加到70 nm,纳米片Ⅰ和纳米片Ⅱ的长度越来越接近,纳米片二聚体的对称性增强,两个纳米片的共振峰逐渐接近重合,叠加后的法诺共振线型的对称性也逐渐增加。因此,可以通过调节两纳米片的相对长度来调整法诺共振线性及波长等特性。

    Figure 6.  Reflection spectra with different length of nanosheet Ⅱ (L1=70 nm, a=0 nm, EF=0.5 eV)

  • 纳米结构的对称性对表面等离激元法诺共振有明显的影响,因此,作者详细研究了两个纳米片相对位置改变对法诺共振的影响。由图 7中的反射谱可以看出,随着图 1a中错位参量a的增加,两个较强的法诺峰间的宽度不断变窄同时越来越尖锐,直到最后消失;共振峰呈对称分布,相应的峰值也不断增加。这是因为当a=0 nm时,两纳米片底边对齐,而当a=15 nm时,两纳米片中心对齐。从结构上来讲,a从0 nm变化到15 nm,结构的对称性不断增加,直到最后关于中心连线对称。因此,可以通过调整结构的对称性来调节法诺共振的线型。

    Figure 7.  Reflection spectra with different location parameters a of the nanosheet heterodimer (L1=70 nm, L2=40 nm, EF=0.5 eV)

3.   结论
  • 基于石墨烯纳米结构所具有的优良光电性能及其可调谐性,利用简单的非对称纳米片二聚体阵列获得了强烈的多阶法诺共振响应。杂化分析显示,法诺共振由两个单纳米片的偶极及四极模式之间耦合相干而形成。因此,通过调节纳米片的大小及相对位置可调节法诺共振的线型及强弱。研究表明,随着费米能级的增加,法诺共振峰相应蓝移,入射光与纳米片的相互作用增强,对应的吸收峰也相应增强。同时,随着纳米片相对位置的改变,当结构的非对称性逐渐加强时,法诺共振的非对称性也逐渐加强。当纳米片Ⅱ的长度逐渐增加时,结构的对称性也跟着增加,法诺共振的非对称性随之减小。这种多阶表面等离激元法诺共振有望在生物传感及相关领域有很好的应用前景。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return