Advanced Search
SHEN Jian, LI Qiaomin, WANG Baocheng, ZHANG Yi. Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates[J]. LASER TECHNOLOGY, 2019, 43(3): 427-431. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.026
Citation: SHEN Jian, LI Qiaomin, WANG Baocheng, ZHANG Yi. Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates[J]. LASER TECHNOLOGY, 2019, 43(3): 427-431. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.026

Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates

More Information
  • Received Date: May 23, 2018
  • Revised Date: July 15, 2018
  • Published Date: May 24, 2019
  • In order to compare and analyze the enhancement effect of surface-enhanced Raman spectroscopy (SERS) by two substrates of TiO2-AgNPs thin film and silver sol nanoparticles solution on the samples of traditional Chinese medicine solution, aconite solution was selected as the experimental sample and surface enhancement Raman spectra of two substrates were obtained after Raman scattering experiment. The analytical comparison was made. The results show that, Raman scattering spectra of aconite solution are enhanced by two SERS substrates of TiO2-AgNPs film and silver sol nanoparticle solution. The enhancement effect 1398cm-1 of TiO2-AgNPs thin film is more sensitive than that of silver sol nanoparticles. For example, relative peak-to-intensity ratio at Raman shift of TiO2-AgNPs thin film is 27.85% and that of silver sol nanoparticle solution is 11.97%. However, TiO2-AgNPs thin film has disadvantages of easy oxidation, short usage time, difficult preparation and low repeatability. Therefore, it is more suitable for the accurate identification of sample components. Silver sol nanoparticle solution has advantages of simpler preparation, longer use time, good stability and repeatability. It is suitable for the determination and comparison of a large number of samples. The results can be used as the reference for the selection of substrate for analysis of active ingredients in traditional Chinese medicine by SERS technology at home and abroad.
  • [1]
    YANG D, YING Y. Applications of Raman spectroscopy in agricultural products and food analysis: a review[J]. Application Specification Reviews, 2011, 46(7): 539-560.
    [2]
    SCHLÜCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications[J]. Angewandte Chemie—International Edition, 2014, 53(19): 4756-4795. DOI: 10.1002/anie.201205748
    [3]
    LU Sh Y, WANG Sh G, LIU W J, et al. Raman spectroscopy in ovarian cancer diagnostics[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1784-1788(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201706025
    [4]
    LI W, FAN X G, WANG X, et al.Design of rapid detection system for urotropine in food based on SERS[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1778-1783(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201706024
    [5]
    DONG J L, HONG M J, ZHENG X Q, et al. Discrimination of human, dog and rabbit blood using Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(2):459-466(in Chinese).
    [6]
    FAN Y X, LAI K Q, RASCO BARBARA A, et al. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy[J]. Food Control, 2014, 37(1):153-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5945c499def0126e3d2f09959a286e4
    [7]
    OU Y M, PEI L, L K Q, et al. Rapid analysis of multiple sudan dyes in chili flakes using surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanospheres[J]. Food Analytical Methods, 2017, 10(3): 565-574. DOI: 10.1007/s12161-016-0618-z
    [8]
    LIU Y D, X Q H, WANG H Y, et al. Quantitative study on phosmot residues in navel oranges based on surface enhanced Raman spectra[J]. Laser Technology, 2017, 41(4): 545-548(in Chinese).
    [9]
    SHARMA Y, DHAWAN A. Plasmonic "nano-fingers on nanowires"as SERS substrates[J]. Optics Letters, 2016, 41(9): 2085-2088. DOI: 10.1364/OL.41.002085
    [10]
    HUANG Y, CHEN Y, XUE X T, et al. Unexpected large nanoparticle size of single dimer hotspot systems for broadband SERS enhancement[J]. Optics Letters, 2018, 43(10): 2332-2335. DOI: 10.1364/OL.43.002332
    [11]
    LI R P, LI Y M, HAN J H, et al. In situ SERS monitoring of plasmonic nano-dopants during photopolymerization[J]. Optics Letters, 2017, 42(9): 1712-1715. DOI: 10.1364/OL.42.001712
    [12]
    TIAN Y, ZHANG H, XU L L, et al. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection[J]. Optics Letters, 2018, 43(4): 635-638. DOI: 10.1364/OL.43.000635
    [13]
    LIN R B, HU L, WANG J Zh, et al. Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons[J]. Optics Letters, 2018, 43(10): 2244-2247. DOI: 10.1364/OL.43.002244
    [14]
    YE Y, LIU Y, SUN S. Theoretical and experimental study on Raman spectra of ammonium thiocyanate solution[J]. Laser Technology, 2015, 39(2): 280-283(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201502028
    [15]
    ZHENG L M, LV Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1): 25-28(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601007
    [16]
    DENG Y.Comparative study of three SERS active substractes based on AgNPs[D]. Dalian: Dalian University of Technology, 2015: 16-36(in Chinese).
    [17]
    LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of Dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395. DOI: 10.1021/j100214a025
    [18]
    JI Sh F, JIANG T L, XU K, et al. FTIR study of the adsorption of water on ultradispersed diamond powder surface[J]. Applied Surface Science, 1998, 133(4): 231-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44f881799f336b2d3bbe00d514d2e684
    [19]
    LIU Y, LIU Ch Y, ZHANG Zh Y, et al. The surface enhanced Raman scattering effects of composite nanocrystals of Ag-TiO2[J]. Spectrochimica Acta, 2001, A57(1):35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c872098f56ea37ff71ebeb42e6c4d7eb
    [20]
    YANG H D, LIN X, LIU Y L, et al. Preparation of three-dimensional hotpot SERS Substrate with silver nanocubes and its application in detection of pesticide[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 99-103(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201801020
    [21]
    LI D W. Controlled synthesis of carbon nanocoils and their application in SERS[D]. Dalian: Dalian University of Technology, 2013: 87-98(in Chinese).
  • Related Articles

    [1]GONG Meimei, XIE Linyi, WU Teng, SHI Wenqing, HUANG Jiang, XIE Yuping, HE Kuanfang. Study on the properties of laser cladding Fe60-TiO2 coating on TC4 surface[J]. LASER TECHNOLOGY, 2022, 46(4): 551-555. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.018
    [2]SUN Xiaojuan, HAN Peigao, JUAN Fangying, HAO Dianzhong. Analysis of optical constants of TiO2 thin film based on in-situ common angle ellipsometry and reflection[J]. LASER TECHNOLOGY, 2022, 46(2): 288-292. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.022
    [3]LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. LASER TECHNOLOGY, 2022, 46(2): 163-168. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.003
    [4]TANG Fanbin, XIAO Jun, MA Zi. Study on wide spectrum characteristics of TiO2 film with ellipsometry[J]. LASER TECHNOLOGY, 2015, 39(6): 776-779. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.009
    [5]LI Ai-kui, WANG Ze-min, LIU Jia-jun, ZENG Xiao-yan. Study on the densification of SiO2-TiO2 sol-gel films by laser irradiation[J]. LASER TECHNOLOGY, 2008, 32(4): 343-345,349.
    [6]LI Ai-kui, WANG Ze-min, LIU Jia-jun, ZENG Xiao-yan. Direct laser writing of strip waveguide in sol-gel film[J]. LASER TECHNOLOGY, 2008, 32(3): 317-319.
    [7]ZHOU Wei-jun, YUAN Yong-hua, GUI Yuan-zhen. Simple time measurement of TiO2/SiO2 film damaged by laser[J]. LASER TECHNOLOGY, 2007, 31(4): 381-383.
    [8]ZHOU Wei-jun, YUAN Yong-hua, ZHANG Da-yong, GUI Yuan-zhen, JIANG Ji-jun. Research on damage of TiO2/SiO2film induced-by 1.06μm CW laser[J]. LASER TECHNOLOGY, 2006, 30(1): 76-77,81.
    [9]Chen Kai, Wu Wenpeng, Zheng Shunxuan. Study on ammonia-sensitive optical property of ZnO/TiO2 multi-layer thin film[J]. LASER TECHNOLOGY, 2001, 25(3): 209-213.
    [10]Li Yi, Zhao Jianping, Zhou Jun, Wang Wei, Ding Zhenya. Fabrication of glass-ceramics window and its optical properties[J]. LASER TECHNOLOGY, 1997, 21(4): 240-243.
  • Cited by

    Periodical cited type(2)

    1. 李玥,王燕. 飞秒激光加工Ag-TiO_2微纳结构及其光催化性能研究. 激光技术. 2022(02): 163-168 . 本站查看
    2. 高骏沣,申健,李乔敏. 基于血拉曼光谱研究食物抗癌功效的营养配餐APP. 计算机产品与流通. 2019(06): 284-285 .

    Other cited types(1)

Catalog

    Article views (6) PDF downloads (2) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return