Citation: | LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. LASER TECHNOLOGY, 2022, 46(2): 163-168. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.003 |
[1] |
NAKATA K, FUJISHIMA A. TiO2 photocatalysis: Design and applications[J]. Photochem Photobiol, 2012, 13(3): 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001
|
[2] |
OHTANI B. Photocatalysis A to Z: What we know and what we do not know in a scientific sense[J]. Photochem Photobiol, 2010, 11(4): 157-178. DOI: 10.1016/j.jphotochemrev.2011.02.001
|
[3] |
PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis, 2012, B125(21): 331-349. http://www.zhangqiaokeyan.com/open-access_resources_thesis/0100022491472.html
|
[4] |
TONG A Y C, BRAUND R, WARREN D S, et al. TiO2-assisted photodegradation of pharmaceuticals—a review[J]. Central European Journal of Chemistry, 2012, 10(4): 989-1027. http://www.degruyter.com/downloadpdf/j/chem.2012.10.issue-4/s11532-012-0049-7/s11532-012-0049-7.xml
|
[5] |
NADEEM R, WASEEM R, HAJERA G, et al. Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye[J]. Journal of Cleaner Production, 2020, 254(1): 120031. http://www.sciencedirect.com/science/article/pii/S0959652620300780
|
[6] |
VO D Q, KIM E J, KIM S W. Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids[J]. Journal of Colloid and Interface Science, 2009, 337(1): 75-80. DOI: 10.1016/j.jcis.2009.04.078
|
[7] |
MALLAKPOUR S, NIKKHOO E. Surface modification of nano-TiO2 with trimellity limido-amino acid-based diacids for preventing aggregation of nanoparticles[J]. Advanced Powder Technology, 2014, 25(1): 348-353. DOI: 10.1016/j.apt.2013.05.017
|
[8] |
TORRES D G, ZÚÑIGA R C I, MAYÉN H S A, et al. Optical and structural properties of the sol-gel-prepared ZnO thin films and their effect on the photocatalytic activity[J]. Solar Energy Materials & Solar Cells, 2009, 93(1): 55-59. http://www.researchgate.net/profile/R_Perez/publication/229227948_Optical_and_structural_properties_of_the_sol-gel-prepared_ZnO_thin_films_and_their_effect_on_the_photocatalytic_activity/links/0deec5374a6afb5049000000.pdf
|
[9] |
XU Y Y, ZHANG M C, ZHANG M, et al. Controllable hydrothermal synthesis, opticaland photocatalytic properties of TiO2 nanostructures[J]. Applied Surface Science, 2014, 315(1): 299-306.
|
[10] |
LIU W W, LU H, ZHANG M, et al. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells[J]. Applied Surface Science, 2015, 347(30): 214-223. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b55921e38c7cebfc941867719c5ca6a6
|
[11] |
CHEN X B, BURDA C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society, 2008, 130(15): 5018-5019. DOI: 10.1021/ja711023z
|
[12] |
HUANG T, LU J L, XIAO R Sh, et al. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtose-cond laser structured titanium substrate[J]. Applied Surface Science, 2017, 403(1): 584-589. http://www.onacademic.com/detail/journal_1000039824714310_5ced.html
|
[13] |
GE M Zh, CAO Ch Y, LI Sh H, et al. In situ plasmonic Ag nano-particles anchored TiO2nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting[J]. Nanoscale, 2016, 8(9): 5226-5234. DOI: 10.1039/C5NR08341A
|
[14] |
WU L, LI F, XU Y Y, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation[J]. Applied Catalysis, 2015, B164: 217-224. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e502811f139c69ea67d03b7cb993e419
|
[15] |
JANG M H, AGAREAL R, NUKALA P, et al. Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction[J]. Nano Letters, 2016, 16(4): 2139-2144. DOI: 10.1021/acs.nanolett.5b02951
|
[16] |
LIU Y, WANG W, XU X M, et al. Recent advances in anion-doped metal oxides for catalytic applications[J]. Journal of Materials Chemistry, 2019, A7(13): 7280-7300. http://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta09913h
|
[17] |
SHEN J, LI Q M, WANG B Ch, et al. Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates[J]. Laser Technology, 2019, 43(3): 427-431 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201903026.htm
|
[18] |
SALTER P S, BOOTH M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8: 110.
|
[19] |
WEI D Zh, WANG Ch W, XU X Y, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 2019, 10(1): 4193-4200. DOI: 10.1038/s41467-019-12251-0
|
[20] |
YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7: 11573. DOI: 10.1038/ncomms11573
|
[21] |
WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394. DOI: 10.1039/b902159k
|
[22] |
ZHANG Ch, WANG G, LIU Z F, et al. The effects of laser micromachining on surface morphology and wettability of Ti6Al4V[J]. Laser Technology, 2021, 45(1): 31-36(in Chinese).
|
[23] |
HOU J G, JIAO Sh Q, ZHU H M, et al. Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2011, 184(1): 154-158. DOI: 10.1016/j.jssc.2010.11.017
|