Advanced Search
LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. LASER TECHNOLOGY, 2022, 46(2): 163-168. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.003
Citation: LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. LASER TECHNOLOGY, 2022, 46(2): 163-168. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.003

Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser

More Information
  • Received Date: February 09, 2021
  • Revised Date: April 24, 2021
  • Published Date: March 24, 2022
  • To improve the catalytic effect of titanium dioxide under solar light, a silver film was deposited on the titanium surface by the vacuum evaporation method, and a femtosecond laser was used for the fabrication of the micro/nanostructured titanium dioxide and the incorporation of silver particles simultaneously. The results show that the photocatalytic efficiency of the Ag-TiO2 for removal of methylene blue is as high as 70% under simulated sunlight for 300min, which is 1.5 times of the photocatalytic efficiency of structured TiO2. This method based on direct processing of bulk materials can increase the specific surface area and solve the problems of traditional titanium dioxide's recycling. Therefore, this technology shows high potential in the fabrication of environment-friendly titanium dioxide photocatalyst with high efficiency and large-scale and rapid production in factories.
  • [1]
    NAKATA K, FUJISHIMA A. TiO2 photocatalysis: Design and applications[J]. Photochem Photobiol, 2012, 13(3): 169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001
    [2]
    OHTANI B. Photocatalysis A to Z: What we know and what we do not know in a scientific sense[J]. Photochem Photobiol, 2010, 11(4): 157-178. DOI: 10.1016/j.jphotochemrev.2011.02.001
    [3]
    PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis, 2012, B125(21): 331-349. http://www.zhangqiaokeyan.com/open-access_resources_thesis/0100022491472.html
    [4]
    TONG A Y C, BRAUND R, WARREN D S, et al. TiO2-assisted photodegradation of pharmaceuticals—a review[J]. Central European Journal of Chemistry, 2012, 10(4): 989-1027. http://www.degruyter.com/downloadpdf/j/chem.2012.10.issue-4/s11532-012-0049-7/s11532-012-0049-7.xml
    [5]
    NADEEM R, WASEEM R, HAJERA G, et al. Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye[J]. Journal of Cleaner Production, 2020, 254(1): 120031. http://www.sciencedirect.com/science/article/pii/S0959652620300780
    [6]
    VO D Q, KIM E J, KIM S W. Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids[J]. Journal of Colloid and Interface Science, 2009, 337(1): 75-80. DOI: 10.1016/j.jcis.2009.04.078
    [7]
    MALLAKPOUR S, NIKKHOO E. Surface modification of nano-TiO2 with trimellity limido-amino acid-based diacids for preventing aggregation of nanoparticles[J]. Advanced Powder Technology, 2014, 25(1): 348-353. DOI: 10.1016/j.apt.2013.05.017
    [8]
    TORRES D G, ZÚÑIGA R C I, MAYÉN H S A, et al. Optical and structural properties of the sol-gel-prepared ZnO thin films and their effect on the photocatalytic activity[J]. Solar Energy Materials & Solar Cells, 2009, 93(1): 55-59. http://www.researchgate.net/profile/R_Perez/publication/229227948_Optical_and_structural_properties_of_the_sol-gel-prepared_ZnO_thin_films_and_their_effect_on_the_photocatalytic_activity/links/0deec5374a6afb5049000000.pdf
    [9]
    XU Y Y, ZHANG M C, ZHANG M, et al. Controllable hydrothermal synthesis, opticaland photocatalytic properties of TiO2 nanostructures[J]. Applied Surface Science, 2014, 315(1): 299-306.
    [10]
    LIU W W, LU H, ZHANG M, et al. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells[J]. Applied Surface Science, 2015, 347(30): 214-223. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b55921e38c7cebfc941867719c5ca6a6
    [11]
    CHEN X B, BURDA C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society, 2008, 130(15): 5018-5019. DOI: 10.1021/ja711023z
    [12]
    HUANG T, LU J L, XIAO R Sh, et al. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtose-cond laser structured titanium substrate[J]. Applied Surface Science, 2017, 403(1): 584-589. http://www.onacademic.com/detail/journal_1000039824714310_5ced.html
    [13]
    GE M Zh, CAO Ch Y, LI Sh H, et al. In situ plasmonic Ag nano-particles anchored TiO2nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting[J]. Nanoscale, 2016, 8(9): 5226-5234. DOI: 10.1039/C5NR08341A
    [14]
    WU L, LI F, XU Y Y, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation[J]. Applied Catalysis, 2015, B164: 217-224. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e502811f139c69ea67d03b7cb993e419
    [15]
    JANG M H, AGAREAL R, NUKALA P, et al. Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction[J]. Nano Letters, 2016, 16(4): 2139-2144. DOI: 10.1021/acs.nanolett.5b02951
    [16]
    LIU Y, WANG W, XU X M, et al. Recent advances in anion-doped metal oxides for catalytic applications[J]. Journal of Materials Chemistry, 2019, A7(13): 7280-7300. http://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta09913h
    [17]
    SHEN J, LI Q M, WANG B Ch, et al. Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates[J]. Laser Technology, 2019, 43(3): 427-431 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201903026.htm
    [18]
    SALTER P S, BOOTH M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8: 110.
    [19]
    WEI D Zh, WANG Ch W, XU X Y, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 2019, 10(1): 4193-4200. DOI: 10.1038/s41467-019-12251-0
    [20]
    YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7: 11573. DOI: 10.1038/ncomms11573
    [21]
    WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394. DOI: 10.1039/b902159k
    [22]
    ZHANG Ch, WANG G, LIU Z F, et al. The effects of laser micromachining on surface morphology and wettability of Ti6Al4V[J]. Laser Technology, 2021, 45(1): 31-36(in Chinese).
    [23]
    HOU J G, JIAO Sh Q, ZHU H M, et al. Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2011, 184(1): 154-158. DOI: 10.1016/j.jssc.2010.11.017

Catalog

    Article views (5) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return