Advanced Search
WANG Xiaomeng, WANG Huifeng, YAO Naifu. Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008
Citation: WANG Xiaomeng, WANG Huifeng, YAO Naifu. Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm[J]. LASER TECHNOLOGY, 2018, 42(2): 181-186. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.008

Parameter optimization of laser displacement sensor based on particle swarm optimization algorithm

More Information
  • Received Date: May 24, 2017
  • Revised Date: June 27, 2017
  • Published Date: March 24, 2018
  • In order to improve the precision of laser triangulation sensor and optimize the optical parameters of design process, through mathematical modeling and computer-aided analysis method, the relationship between key parameters of laser triangulation sensor and each index of measurement system was analyzed. A method of parameter optimization based on particle swarm algorithm was adopted. After theoretical analysis and experimental verification, the parameters to meet the requirements of optical system optimization were gotten. The results show that, the parameter is controlled by each other during designing. Search spaces and constraints of particle swarm are determined. When sensitivity Smin reaches 2.2386mm, the resolution of system can reach 2.8μm. Other parameters meet the system requirements, and the optimization efficiency is greatly improved. The optimization method is simple and convenient to operate.
  • [1]
    WU W, YAN L P.Laser displacement ranging system based on PSD[J]. Microcontrollers & Embedded Systems, 2016, 16(1):49-52(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xagyxyxb201801012
    [2]
    WANG X J, GAO J, WANG L. Survey on the laser triangulation[J]. Chinese Journal of Scientific Instrument, 2004, 25(4):601-604(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bce771bb0d062b5d29d294421d1c6881
    [3]
    WU J B, LUO Q M.Biomedical applications of laser triangulation[J]. Laser Technology, 2006, 30(1):1-4(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200601001
    [4]
    ZHU Y X, ZHAO J, WANG Y L. Model establishment and parameter optimization of high precision laser ranging system[J]. Machinery, 2016, 54(7):68-71(in Chinese).
    [5]
    DEMEYERE M, RURIMUNZU D, EUGENE C. Diameter measurement of spherical objects by laser triangulation inall ambulatory context[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(3):867-872. DOI: 10.1109/TIM.2007.894884
    [6]
    JIN W Y, ZHAO H, TAO W. Modeling of laser triangulation sensor and parameters optimization[J]. Chinese Journal of Sensors and Actuators, 2006, 19(4):1090-1093(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cgjsxb200604040
    [7]
    SEN W X, FENG P, KE X, et al. Melt level measurement for the CZ crystal growth using an improved laser triangulation system[J]. Measurement, 2017, 103(5):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a81d866c136927453be22ec7f23408ec
    [8]
    EHLERT D, HORN H J, AME R. Measuring crop biomass density by laser triangulation[J]. Computers and Electronics in Agriculture, 2008, 61(2):117-125. DOI: 10.1016/j.compag.2007.09.013
    [9]
    XIE Zh J, ZHENG L J, QU Zh G.Improved PSO algorithm based PID controller of permanent magnet synchronous motor[J]. Modern Electronics Technique, 2017, 40(7):139-142(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddzjs201707037
    [10]
    WANG D F, MENG L. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 40(10):1552-156(in Chinese).
    [11]
    DAI C, WANG Y Q, XUE F. 3-D lidar echo decomposition based on particle swarm optimization[J]. Laser Technology, 2016, 40(2):284-287(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602028
    [12]
    RIWANTO B A, TIKKA T, KESTILA A. Particle swarm optimization with rotation axis fitting for magnetometer calibration.IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2):1009-1022. DOI: 10.1109/TAES.2017.2667458
    [13]
    LIU Zh X, LIANG H.Parameter setting and experimental analysis of the random number in particle swarm optimization algorithm[J]. Control Theory & Applications, 2010, 27(11):1489-1496(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201011007
    [14]
    ZHANG L P, YU J H, HU Sh X. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University Science A(Science in Engineering), 2005, 6A(6):528-534. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c627ddf56e11e750d4ed4ed07a5be5bb
    [15]
    ZHANG G Y, WU Y J. Multi-constraint optimization algorithm based on multistage punish function and particle swarm optimization[J]. Journal of Beijing Institute of Petrochemical Technology, 2008, 16(4):30-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsyhgxyxb200804008
  • Related Articles

    [1]KANG Hu, ZHANG Xia, ZHENG Shijie, SHAO Li, FENG Guoying. High-stability gas detection based on modulated laser spectral absorption[J]. LASER TECHNOLOGY, 2024, 48(2): 145-152. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.001
    [2]ZHANG Dingmei. Study on optical feedback dynamics based on semiconductor ring lasers[J]. LASER TECHNOLOGY, 2019, 43(6): 789-794. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.011
    [3]YUAN Xinrong, ZUO Duluo, WANG Xinbing. Simulation of magnetically switched compression discharge circuits for pulsed gas lasers[J]. LASER TECHNOLOGY, 2016, 40(2): 199-204. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.010
    [4]ZHANG Xin, HU Zhifen, WU Suyong, TAN Zhongqi. Narrow band filter for discharge glow suppression of He-Ne gas based on OpenFilters software[J]. LASER TECHNOLOGY, 2015, 39(3): 432-436. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.033
    [5]YANG Weihong, TANG Xiahui, XIAO Longsheng, ZHOU Yongquan. Study on gas flow characteristics in 5kW transverse flow CO2 laser with single discharge box[J]. LASER TECHNOLOGY, 2014, 38(5): 608-613. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.007
    [6]CHENG Yuan-li, LI Si-ning, WANG Qi. Extreme ultraviolet source of microlithography based on laser induced plasma and discharge induced plasma[J]. LASER TECHNOLOGY, 2004, 28(6): 561-564.
    [7]LI Xiao-fen, ZUO Du-luo, CHENG Zu-hai. Numerical simulation of discharge processes of a UV-preionized TEA CO2 laser[J]. LASER TECHNOLOGY, 2004, 28(5): 476-479.
    [8]REN Ren, CHEN Chang-le, ZHU Shi-hua, XU Jin, JIN Ke-xin, WANG Yong-cang, YUAN Xiao, SONG Zhou-mo. Dynamic model of a new XeCl laser with short duration time and UV grow discharge system design[J]. LASER TECHNOLOGY, 2004, 28(4): 434-437,448.
    [9]Wang Xinbing, Xie Mingjie, Lu Hong. The research of large volume homogeneous discharge for the transverse-flow CO2 lasers[J]. LASER TECHNOLOGY, 2003, 27(1): 71-72.
    [10]Wang Yunping, Jiang Zongfu, Chen Jinbao, Liu Tianhua, Li Wenyu. Experimental study on the small signal gain of gas dynamic CO2 lasers[J]. LASER TECHNOLOGY, 2001, 25(3): 225-228.
  • Cited by

    Periodical cited type(1)

    1. 胥晗,孙科学,徐荣青. 基于LSPR效应的金属-半导体-金属光电探测器性能的研究. 激光与光电子学进展. 2025(03): 87-93 .

    Other cited types(0)

Catalog

    Article views (9) PDF downloads (5) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return