Advanced Search
ZENG Xing, WU Bo, SHI Xiaoding, FAN Dong, LÜ Mingai, ZHANG Guojuan, LI Shaobo, ZHOU Xin. Study on airborne laser cloud particle imaging probe and its calibration[J]. LASER TECHNOLOGY, 2015, 39(6): 798-801. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.014
Citation: ZENG Xing, WU Bo, SHI Xiaoding, FAN Dong, LÜ Mingai, ZHANG Guojuan, LI Shaobo, ZHOU Xin. Study on airborne laser cloud particle imaging probe and its calibration[J]. LASER TECHNOLOGY, 2015, 39(6): 798-801. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.014

Study on airborne laser cloud particle imaging probe and its calibration

More Information
  • Received Date: September 27, 2014
  • Revised Date: November 05, 2014
  • Published Date: November 24, 2015
  • In order to measure and image cloud droplets ranging from 25m to 1550m, an airborne cloud particle imaging probe was designed based on the established optical imaging techniques. The images of particles passing through a collimated laser beam were projected onto a linear array of 64-element photo detectors and were reconstructed from the individual image slices. The function of each component and the quantitative standard of each detection unit were introduced. The method of data acquisition and the factors affecting the accuracy of cloud particle imaging were discussed. A calibration setup of particle size was constructed where seven kinds of standard dots were used to calibrate cloud imaging probe. The calibration experiment results show that cloud imaging probe can accurately achieve particle size distribution and display 2-D images. The airborne experiment data shows that cloud imaging probe is able to detect cloud droplets and acquire their images.
  • [1]
    TAO S W, LIU W G, LI N T, et al. A study of real-time identification of seedability of cold stratiform clouds[J]. Quarterly Journal of Applied Meteorology, 2001, 12(s1):14-22 (in Chinese).
    [2]
    KNOLLENBERG R G. Optical array: an alternative to scattering or extinction for airborne particle size determination [J]. Journal of Applied Meteorology, 1969, 9(1):86-103.
    [3]
    KOROLEV A V, KUZNETSOV S V, MAKAROV Y E, et al. Evaluation of measurements of particle size and sample area form optical array probes[J].Journal of Atmospheric and Oceanic Technology, 1991, 8(4): 514-522.
    [4]
    BAUMGARDNER D, KOROLEV A V. Airspeed corrections for optical array probe sample volumes[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(5): 1224-1229.
    [5]
    REUTER A, BAKAN A. Improvements of cloud particle sizing with a 2-D-grey probe[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(5):1196-1202.
    [6]
    KOROLEV A V, STRAPP J W, ISAAC G A. Evaluation of accuracy of PMS optical array probes[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3):708-720.
    [7]
    JENSEN J B, GRANEK H. Optoelectronic simulation of the PMS 260X optical array probe and application to drizzle in a marine stratocumulus[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(5):568-585.
    [8]
    SMEDLEY A R D, SAUNDERS C P R, WEBB A R. Small-particle size determination by optical array probe oversampling[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(11):1568-1575.
    [9]
    FIELD P R, HEYMSFIELD A J, BANSEMER A. Shattering and particle interarrival times measured by optical array probes in ice clouds[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(10): 1357-1371.
    [10]
    LIU W G, SU Z J, WANG G H. A new PMS particle detection system and its application[J]. Journal of Applied Meteorological Science, 2003, 14(s1): 11-18(in Chinese).
    [11]
    BU L B, SHAN K L, HUANG X Y. Studies on probe of cloud droplet[J].Chinese Journal of Lasers, 2009, 36(1): 216-218 (in Chinese).
    [12]
    BU L B, WANG M , HUANG X Y, et al. Study of cloud droplet probe and its calibration[J]. Chinese Journal of Lasers, 2011, 38(8): 0808005(in Chinese).
    [13]
    BO G Y, LIU D , WANG B X, et al. Two-wavelength polarization airborne lidar for observation of aerosol and cloud[J]. Chinese Journal of Lasers, 2012, 39(10):1014002(in Chinese)
    [14]
    HUANG X Y, CHANG Y N, BU L B. Development on one-dimensional probe of cloud droplet and its data analysis[J]. High Power Laser and Particle Beams, 2013, 25(8): 2101-2105(in Chinese).
    [15]
    BU L B, GAO A Z, YUAN J, et al. New cloud droplet probe and its first observation results[J]. Journal of Acta Photonica Sinica, 2014, 43(1): 0101005(in Chinese).
  • Related Articles

    [1]WANG Yu, ZENG Yan'an, ZHENG Haiting, MIAO Dan. Study on luminance accurate measurement method based on imaging spectrometer[J]. LASER TECHNOLOGY, 2024, 48(2): 166-170. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.004
    [2]LIU Yifei, SU Ya, YAO Xiaotian, CUI Shengwei, YANG Lijun, ZHOU Congcong, HE Song. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. LASER TECHNOLOGY, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
    [3]ZHAO Jiale, WANG Guanglong, ZHOU Bing, YING Jiaju, WANG Qianghui, LI Bingxuan. Noise evaluation method for land-based hyperspectral images based on edge elimination[J]. LASER TECHNOLOGY, 2023, 47(1): 121-126. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.019
    [4]HAN Shan, HUANG Yuanshen, LI Baicheng, ZHANG Dawei, NI Zhengji. Progress of Offner imaging spectrometers for eliminating aberration[J]. LASER TECHNOLOGY, 2015, 39(1): 33-38. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.007
    [5]ZHU Zengwei, CHENG Mingxiao, ZHANG Liang, KONG Dehong. Detection of components of aromatics hydrocarbons unit based on Raman spectrometer[J]. LASER TECHNOLOGY, 2014, 38(6): 839-844. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.025
    [6]LI Rui, LI Xiao, WANG Zhibin, HUANG Yanfei, WANG Yaoli, ZHANG Rui. Application of array detectors in imaging spectrometer polarization detection technique[J]. LASER TECHNOLOGY, 2014, 38(6): 822-825. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.021
    [7]YANG Hailei, SONG Lianke, WANG Rongxin, WANG Huili. Design of the α-BBO crystal Wollaston prism-based on the imaging spectrometer[J]. LASER TECHNOLOGY, 2014, 38(1): 79-82. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.017
    [8]WU Chuan-long, FENG Guo-ying, HAN Xu, JIANG Hai-tao, OU Qun-fei, WANG Jian-jun, LI Mi. Wavelength calibration for miniature fiber optical spectrometers[J]. LASER TECHNOLOGY, 2012, 36(5): 682-685. DOI: 10.3969/j.issn.1001-3806.2012.05.027
    [9]HAO Jian, ZHANG Ji-long, CUI Dan-feng, JING Ning. Spectrum recovery of Fourier transform spectrometer based on FPGA[J]. LASER TECHNOLOGY, 2011, 35(6): 804-807. DOI: 10.3969/j.issn.1001-3806.2011.06.022
    [10]Yuan Hui, Zhou Jing, Tan Suqing. Study of a binary optical element applied in computered tomography image formation spectrometer[J]. LASER TECHNOLOGY, 2001, 25(2): 112-115.
  • Cited by

    Periodical cited type(0)

    Other cited types(4)

Catalog

    Article views (2) PDF downloads (7) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return