Advanced Search
LIU Yifei, SU Ya, YAO Xiaotian, CUI Shengwei, YANG Lijun, ZHOU Congcong, HE Song. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. LASER TECHNOLOGY, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
Citation: LIU Yifei, SU Ya, YAO Xiaotian, CUI Shengwei, YANG Lijun, ZHOU Congcong, HE Song. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. LASER TECHNOLOGY, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004

An optimization method of image processing for OCT non-invasive blood glucose detection

More Information
  • Received Date: March 16, 2022
  • Revised Date: May 16, 2022
  • Published Date: March 24, 2023
  • In order to solve the problem of the influence of different optical coherence tomography (OCT) image preprocessing methods on scattering coefficient calculation in dermis, and to improve the accuracy of noninvasive blood glucose detection, an optimization method of early OCT image data processing was proposed. The 3-D images were first processed by skin surface alignment, 3-D reconstruction and 1-D average, and then the background noise and data normalization effect on the accuracy of blood glucose prediction were analyzed by clinical experiments. The results show that the prediction error decreases by 18.31% compared with that before pretreatment. This study has important reference value for improving the accuracy of optical noninvasive blood glucose detection using OCT.
  • [1]
    余振芳, 邱琪, 郭勇. 双调制光学偏振法葡萄糖浓度检测[J]. 光学学报, 2016, 36(1): 117001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601027.htm

    YU Zh F, QIU Q, GUO Y. Glucose concentration detection by dou-ble-modulation optical polarization method [J]. Acta Optica Sinica, 2016, 36(1): 117001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601027.htm
    [2]
    陈玮, 陈裕泉. 非图案化法制备柔性连续葡萄糖监测传感器[J]. 分析化学, 2016, 44(4): 654-659. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201604029.htm

    CHEN W, CHEN Y Q. Fabrication of flexible continuous glucose monitoring sensor by non-patterning method [J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 654-659(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201604029.htm
    [3]
    范一强, 高峰, 王玫, 等. 可穿戴式微流控芯片在体液检测和药物递送中的研究进展[J]. 分析化学, 2017, 45(3): 455-463. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201703024.htm

    FAN Y Q, GAO F, WANG M, et al. Recent development of wearable microfluidics applied in body fluid testing and drug delivery[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 455-463(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201703024.htm
    [4]
    SHOKREKHODAEI M, QUINONES S. Review of non-invasive glucose sensing techniques: Optical, electrical and breath acetone [J]. Sensors, 2020, 20(5): 1251. DOI: 10.3390/s20051251
    [5]
    LARIN K V, ELEDRISI M S, MOTAMEDI M, et al. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects [J]. Diabetes Care, 2002, 25(12): 2263-2267. DOI: 10.2337/diacare.25.12.2263
    [6]
    KURANOV R V, SAPOZHNIKOVA V V, PROUGH D S, et al. Prediction capability of optical coherence tomography for blood glucose concentration monitoring [J]. Journal of Diabetes Science and Technology, 2007, 1(1): 470-477.
    [7]
    LARIN K V, MOTAMEDI M, ASHITKOV T V, et al. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: A pilot study [J]. Physics in Medicine and Biology, 2003, 48(10): 1371-1390. DOI: 10.1088/0031-9155/48/10/310
    [8]
    HE R Y, WEI H J, GU H M, et al. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: A pilot study [J]. Journal of Biomedical Optics, 2012, 17(10): 101513. DOI: 10.1117/1.JBO.17.10.101513
    [9]
    MARUO K, OOTA T, TSURUGI M, et al. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method: Trial application to patients in an intensive care unit [J]. Applied Spectroscopy, 2006, 60(12): 1423-1431. DOI: 10.1366/000370206779321508
    [10]
    RAMASAHAYAM S, ARORA L, CHOWDHURY S R, et al. FPGA based system for blood glucose sensing using photo plethysmography and online motion arifact correction using adaline [C]//Proceedings of the 9th International Conference on Sensing Technology. New York, USA: IEEE, 2015: 1-21.
    [11]
    KATRUI N B, NUR A T, MOHD H H, et al. PLS predictive model for in-vivo non-invasive finger touch blood glucose NIR spectrosensor [C]//Regional Symposium on Micro and Nanoelectronics (RSM). New York, USA: IEEE, 2021: 88-91.
    [12]
    ARIF A Y, NOREHA A M, ZAHIRUL A H M, et al. Continuous non-invasive blood glucose level measurement using near-infrared LEDs [C]//8th International Conference on Computer and Communication Engineering (ICCCE). New York, USA: IEEE, 2021: 32-37.
    [13]
    YU Y, HUANG J P, ZHU J, et al. An accurate noninvasive blood glucose measurement system using portable near-infrared spectrometer and transfer learning framework [J]. IEEE Sensors Journal, 2021, 21(3): 3506-3519.
    [14]
    GOETZ M J, COTE G L, ERCKENS R, et al. Application of a multivariate technique to Raman spectra for quantification of body chemicals [J]. IEEE Transactions on Biomedical Engineering, 1995, 42(7): 728-731. DOI: 10.1109/10.391172
    [15]
    ENEJDER A M K, SCECINA T G, OH J, et al. Raman spectroscopy for noninvasive glucose measurements [J]. Journal of Biomedical Optics, 2005, 10(3): 031114. DOI: 10.1117/1.1920212
    [16]
    GOLPARVAR A, BOUKHAYMA A, LOAYZA T, et al. Very selective detection of low physiopathological glucose levels by spontaneous Raman spectroscopy with univariate data analysis [J]. Biological Nano Science, 2021, 11: 871-877. http://doc.paperpass.com/foreign/rgArti20212817759.html
    [17]
    DEEPAK K P, HARDIK L K, PARIDHI S, et al. Overview of Raman spectroscopy: Fundamental to applications [J]. Modern Techniques of Spectroscopy, 2021, 13: 145-184.
    [18]
    GLADKOVA N D, PETROVA G A, NIKULIN N K, et al. In vivo optical coherence tomography imaging of human skin: Norm and pathology [J]. Skin Research and Technology, 2000, 6(1): 6-16.
    [19]
    DREZEK R, DUNN A, RICHARDS K R. Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements [J]. Applied Optics, 1999, 38(16): 3651-3661.
    [20]
    SU Y, YAO X S, LI Z, et al. Measurement of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: A pilot study[J]. Biomedical Optics Express, 2015, 6(2): 500-513. http://www.onacademic.com/detail/journal_1000038267085710_7a8d.html
    [21]
    SU Y, YAO X S, WEI C J, et al. Determination of the pressure coefficient of optical attenuation in differernt layers of in-vivo human skins with optical coherence tomography[J]. IEEE Photonics Journal, 2016, 8(1): 3800110.
    [22]
    SOLANKI J, SEN P, ANDREWS J T, et al. Blood glucose monitoring in human subjects using optical coherence tomography [J]. Journal of Optics, 2012, 41(3): 127-133.
    [23]
    KURANOV R V, SPAOZHNIKOVA V V, PROUGH D S, et al. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography[J]. Physics in Medicine and Biology, 2006, 51(16): 3885-3900.
    [24]
    YASUAKI H, YOSHIAKI Y. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography [J]. Optics Express, 2006, 14(5): 1862-1877.
    [25]
    BHANDARI A, HAMRE B, FRETTE B, et al. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices[J]. Optics Express, 2011, 19(15): 14549-14567.
    [26]
    苏亚, 孟卓, 王龙志, 等. 光学相干层析无创血糖检测中相关性分析及标定[J]. 中国激光, 2014, 41(7): 0704002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201407022.htm

    SU Y, MENG Zh, WANG L Zh, et al. Correlation analysis and ca-libration of noninvasive blood glucose monitoring in vivo with optical coherence tomography [J]. Chinese Journal of Lasers, 2014, 41(7): 0704002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201407022.htm
    [27]
    苏亚, 孟卓, 于海民, 等. OCT无创检测技术的人体血糖平衡延迟时间研究[J]. 激光技术, 2015, 39(1): 19-22. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.004

    SU Y, MENG Zh, YU H M, et al. Study on blood glucose lag time in noninvasive measurement using optical coherence tomography [J]. Laser Technology, 2015, 39(1): 19-22(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2015.01.004
  • Cited by

    Periodical cited type(3)

    1. 蒋曲博,郭智元,卢泽楷,刘高. 1300万像素广角手机镜头设计. 光学技术. 2024(05): 520-525 .
    2. 杨帅,邱丽荣,汤亮,杨铮,崔健,王允,赵维谦. 激光差动共焦干涉高精度测量技术及仪器. 光学学报. 2023(15): 46-54 .
    3. 崔明拓,邱丽荣,崔健,杨帅. 五维自动调整差动共焦间隙测量方法. 光学技术. 2023(06): 692-698 .

    Other cited types(4)

Catalog

    Article views (7) PDF downloads (7) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return