Advanced Search
ZHAO Gang, HUANG Xuan, HUA Zhiqiang. Research and analysis of low-level wind shear warning algorithm in LiDAR[J]. LASER TECHNOLOGY, 2025, 49(2): 203-209. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.007
Citation: ZHAO Gang, HUANG Xuan, HUA Zhiqiang. Research and analysis of low-level wind shear warning algorithm in LiDAR[J]. LASER TECHNOLOGY, 2025, 49(2): 203-209. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.007

Research and analysis of low-level wind shear warning algorithm in LiDAR

More Information
  • Received Date: February 05, 2024
  • Revised Date: April 28, 2024
  • In order to compare the application effect of two low altitude wind shear alerting algorithms of combined shear algorithm and the regional divergence algorithm on wind light detection and ranging (LiDAR) in complex wind fields, 15 wind shear cases caused by 3 typical weather processes of convective system, cold front, and momentum down at a typical plateau airport from 2017-12 to 2023-04 were selected for comparative analysis of the effectiveness of the recognition algorithms by using a wind LiDAR radar that is made in China. The results show that the accuracy of the combined shear algorithm and the regional divergence algorithm are 73.3% and 67.7%, respectively. The validity of low-level wind shear alarm obtained by the algorithm can last for more than 10 min. It can be seen that the combined shear algorithm is more advantageous in the identification of small-scale low-level wind shear. However, in the case of convective type and cold front type low-level wind shear with slow wind field change, the recognition rate of the two algorithms is not high. The research results of this paper have a good reference significance for equipment manufacturers to improve the low altitude wind shear alerting algorithm.

  • [1]
    INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear: Doc 9817[S]. Ottawa, Canada: International Civil Aviation Organization, 2005.
    [2]
    GULTEPE I, SHARMANR, WILLIAMS P D, et al. A review of high impact weather for aviation meteorology[J]. Pure and Applied Geophysics, 2019, 176(5): 1869-1921. DOI: 10.1007/s00024-019-02168-6
    [3]
    王青梅, 郭乐乐. 激光测风雷达在机场低空风切变探测中的应用[J]. 激光与红外, 2012, 42(12): 1324-1328.

    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12): 1324-1328(in Chinese).
    [4]
    戴丽莉. 探测微尺度风切变场的多普勒激光测风雷达研究[D]. 南京: 南京理工大学, 2010.

    DAI L L. Research of Doppler lidar in detection of low altitude wind shear[D]. Nanjing: Nanjing University of Science and Technology, 2010(in Chinese).
    [5]
    郭忠立. 双流机场风切变预警系统方案设计及LLWAS算法研究[J]. 气象水文海洋仪器, 2018, 35(2): 28-31.

    GUO Zh L. Design of wind shear alarming system for Shuangliu airport and LLAWS algorithm research[J]. Meteorological, Hydrological and Marine Instruments, 2018, 35(2): 28-31(in Chinese).
    [6]
    黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

    HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010
    [7]
    范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003.

    FAN Q, ZHU K Y, ZHENG J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003(in Chinese).
    [8]
    李林蔚, 陈亚军, 弓宇恒. 激光测风雷达反演风场产品在冬运会的适用性分析[J]. 现代电子和技术, 2022, 45(13): 93-98.

    LI L W, CHEN Y J, GONG Y H. Applicability of wind field products retrieved from wind lidar in the Winte Games[J]. Modern Electronics Technique, 2022, 45(13): 93-98(in Chinese).
    [9]
    华志强, 黎倩, 黄轩. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5): 600-604. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    HUA Zh Q, LI Q, HUANG X. Analysis of the typical application of laser wind measurement radar in avation support[J]. Laser Technology, 2020, 44(5): 600-604(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012
    [10]
    牛向华, 黄轩, 朱文会, 等. 1.55 μm激光雷达高原机场下击暴流探测应用研究[J]. 激光技术, 2024, 48(3): 318-326.

    NIU X H, HUANG X, ZHU W H, et al. Application research of 1.55 μm wind LiDAR in detecting downburst on a plateau airport[J]. Laser Technology, 2024, 48(3): 318-326(in Chinese).
    [11]
    赵文凯, 单雨龙, 赵世军. 激光测风雷达监测低空风切变研究进展[J]. 气象水文海洋仪器, 2020, 37(4): 97-100.

    ZHAO W K, SHAN Y L, ZHAO Sh J. Research progress of low-level wind shear detection by laser radar[J]. Meteorological, Hydrological and Marine Instruments, 2020, 37(4): 97-100(in Chinese).
    [12]
    HERMES L G, WITT A, SMITH S, et al. The gust-front detection and wind-shift algorithms for the terminal Doppler weather radar system[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(5): 693-709.
    [13]
    CHAN P W, SHUN C M, WU K C. Operational LiDAR-based system for automatic wind shear alerting at the Hong Kong International Airport[C]//12th Conference on Aviation, Range, and Aerospace Meteorology. Atlanta, GA, USA: American Meteorological Society, 2006: r613.
    [14]
    CHAN P W. Application of LiDAR-based F-factor in windshear alerting[J]. Meteorologische Zeitschrift, 2012, 21(2): 193-204.
    [15]
    HON K K, CHAN P W. Application of LiDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence alerts at Hong Kong International Airport[J]. Meteorological Applications, 2014, 21(1): 74-85.
    [16]
    KEOHAN C. Ground-based wind shear detection systems have become vital to safe operations[J]. ICAO Journal, 2007, 62(2): 16-19.
    [17]
    AUGROS C, TABARY P, ANQUEZ A, et al. Development of a nationwide low-level wind shear mosaic in France[J]. Weather & Forecasting, 2013, 28(5): 1241-1260.
    [18]
    蒋立辉, 闫妍, 熊兴隆, 等. 基于斜坡检测的多普勒激光雷达低空风切变预警算法[J], 红外与激光工程, 2016, 45(1): 106001.

    JIANG L H, YAN Y, XIONG X L, et al. Doppler lidar alerting algorithm of low-level wind shear based on ramps detection. Infrared and Laser Engineering, 2016, 45(1): 106001(in Chinese).
    [19]
    LI L Q, SHAO A M, ZHANG K J, et al. Low-level wind shear characteristics and lidar-based alerting at Lanzhou Zhongchuan International Airport, China[J]. Journal of Meteorological Research, 2020, 34(3): 633-645.
    [20]
    范琪, 郑佳锋, 周鼎富, 等. 基于激光测风雷达的机场低空风切变识别算法[J]. 红外与毫米波学报, 2020, 39(4): 462-472.

    FAN Q, ZHENG J F, ZHOU D F, et al. Research on airport low-level wind shear identification algorithm based on laser wind shear[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 462-472(in Chinese).
    [21]
    张开俊, 伏龙延, 李兰倩, 等. 基于激光测风雷达的两种低空风切变告警算法对比研究[J]. 干旱气象, 2021, 39(4): 652-661.

    ZHANG K J, FU L Y, LI L Q, et al. Comparison of two lidar-based alerting algorithms for low-level wind shear[J]. Journal of Arid Meteorology, 2020, 39(4): 462-472(in Chinese).
    [22]
    刘晓明. 激光雷达识别低空风切变的方法和效果[J]. 激光技术, 2024, 48(3): 416-424. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.018

    LIU X M. Methodology and effectiveness of LiDAR in identifying low-level wind shear[J]. Laser Technology, 2024, 48(3): 416-424(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.03.018
  • Related Articles

    [1]LIU Xiaoming. Methodology and effectiveness of LiDAR in identifying low-level wind shear[J]. LASER TECHNOLOGY, 2024, 48(3): 416-424. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.018
    [2]WANG Nan, YIN Caihu, LIU Xiaoming, GAO Jinwei. Analysis of LiDAR in a cold front low-level wind shear in Urumqi Airport[J]. LASER TECHNOLOGY, 2023, 47(4): 565-571. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.019
    [3]ZHANG Qianqian, SHI Weiheng, WU Bo, WAN Jiashuo, CHENG Jiahao, GONG Jing, ZHAO Qinghu. Application of LiDAR based on wavelet transform modulus maxima in low-level wind shear alerting[J]. LASER TECHNOLOGY, 2022, 46(5): 610-617. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.005
    [4]HUANG Xuan, ZHENG Jiafeng, ZHANG Jie, MA Xiaoling, TIAN Weidong, HUA Zhiqiang. Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. LASER TECHNOLOGY, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010
    [5]ZHANG Tao, LI Qian, ZHENG Jiafeng, ZHANG Wenling, FAN Qi, ZHANG Jie. A study on low-level wind shear caused by microburst using lidar and other data[J]. LASER TECHNOLOGY, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007
    [6]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [7]LI Xuhan, DONG Anguo, FENG Jianhu. Regional fusion algorithm of images based on multistage guide filters[J]. LASER TECHNOLOGY, 2016, 40(5): 756-761. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.029
    [8]LI Bin, QIAN Xiao-fan, LI Xing-hua, LIN Chao. Phase-unwrapping algorithm based on radial shearing principle[J]. LASER TECHNOLOGY, 2013, 37(1): 44-47. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.011
    [9]HUANG Min, WANG Yu-lan, WANG Na, CHEN Yong, ZHOU Ding-fu, SHI Xiao-ding, FENG Li-tian, Feng Li-tian. Algorithm and simulation of downward velocity azimuth display of airborne wind lidars[J]. LASER TECHNOLOGY, 2012, 36(1): 22-25,41. DOI: 10.3969/j.issn.1001-3806.2012.01.007
    [10]XU Wen-jing, SUN Dong-song, SHU Zhi-feng, TANG Lei, DONG Ji-hui, HU Dong-dong, WANG Guo-cheng. Wind velocity inversion algorithm for triple-channel Rayleigh Doppler wind lidars[J]. LASER TECHNOLOGY, 2011, 35(4): 481-485,491. DOI: 10.3969/j.issn.1001-3806.2011.04.011

Catalog

    Article views (6) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return