Advanced Search
HUANG Xuan, ZHENG Jiafeng, ZHANG Jie, MA Xiaoling, TIAN Weidong, HUA Zhiqiang. Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. LASER TECHNOLOGY, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010
Citation: HUANG Xuan, ZHENG Jiafeng, ZHANG Jie, MA Xiaoling, TIAN Weidong, HUA Zhiqiang. Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. LASER TECHNOLOGY, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport

More Information
  • Received Date: March 02, 2021
  • Revised Date: April 11, 2021
  • Published Date: March 24, 2022
  • Low-level wind shear is a major threat to aviation safety. To study the fine structure and evolution of typical low-level wind shear in plateau airports, for the two types of wind shear caused by different synoptic processes at Xining Airport on 2020-02-13, FC-Ⅲ wind lidar data combined with wind profile radar and other data were anaylized. The results show that the causes and evolution characteristics of the two types of wind shear are different, the tailwind shear line exhibits as a "cone" and affects the runway from west to east, while the moving path of the headwind shear line is opposite, the maximum wind speed exceeds 20m/s. The vertical structure of the wind field has different characteristics, the wind speed of more than 15m/s propagates downwards causing tailwind shear; for the headwind shear, wind direction changes over 160° in the near-surface layer; in the two processes, wind speed difference between adjacent moments in the glide path mode both exceed 15m/s. The formation and development of the two types of low-level wind shear in the plateau winter are rapid. The high-resolution three-dimensional scanning lidar can detect the evolution process and fine structure of the wind shear, which is significant to improving aviation safety.
  • [1]
    INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M]. Ottawa, Canada: International Civil Aviation Organization, 2005: 5-27.
    [2]
    GULTEPE I, SHARMAN R, WILLIAMS P D, et al. A review of high impact weather for aviation meteorology[J]. Pure and Applied Geophysics, 2019, 176(5): 1869-1921. DOI: 10.1007/s00024-019-02168-6
    [3]
    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12): 1324-1328(in Chinese).
    [4]
    TANG M, ZHUANG W F. Detective technology of low-level wind shear[J]. Air Traffic Management, 2005(5): 47-49(in Chinese).
    [5]
    CUI G H, CAO K J, ZHU Y B. Design of ultrasonic anemometer measurement system with high sensitivity based on C8051F020[J]. Computer Measurement & Control, 2009, 17(11): 2158-2160(in Chinese).
    [6]
    HU M B, TAN Sh Q, TANG D Zh, et al. A study on the method for detecting low-level wind shear over airport with single Doppler radar[J]. Journal of Nanjing Institute of Meteorology, 2000, 23(1): 113-118(in Chinese).
    [7]
    HU J M, LIU F, HUANG Y M, et al. Doppler radar echo characteristics of hail and low-level wind shear weather[J]. Guangdong Meteorology, 2008, 30(1): 24-28(in Chinese).
    [8]
    HU M B, XIAO W J. The preliminary study on analysis method of wind shear using wind profiler[J]. Journal of the Meteorological Sciences, 2010, 30(4): 510-515(in Chinese).
    [9]
    WANG L, WANG G R, GU Y, et al. Application of wind profiler radar vertical radial[J]. Meteorological Monthly, 2014, 40(3): 290-296(in Chinese).
    [10]
    PEARSON G N, EACOCK J R. A fiber-based coherent pulsed Doppler lidar for atmospheric monitoring[J]. Proceedings of the SPIE, 2002, 4484: 51-57. DOI: 10.1117/12.452799
    [11]
    PEARSON G N, ROBERTS P J, EACOCK J R, et al. Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications[J]. Applied Optics, 2002, 41(30): 6442-6450. DOI: 10.1364/AO.41.006442
    [12]
    JEFFREY Y B, GRANT E A, GRADY J K, et al. Noise whitening in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar at NASA Langley Research Center[J]. Proceedings of the SPIE, 2012, 8379: 83790N.
    [13]
    MICHAEL J K, GRADY J K, MULUGETA P, et al. Testbed Doppler wind lidar and intercomparison facility at NASA Langley Research Center[J]. Proceedings of the SPIE, 2004, 5653: 167-174.
    [14]
    GRADY J K, MULUGETA P, BRUCE W B, et al. Validar: A testbed for advanced 2-micron Doppler lidar[J]. Proceedings of the SPIE, 2004, 5412: 87-98. DOI: 10.1117/12.542116
    [15]
    FENG L T, GUO H Q, CHEN Y, et al. Experiment of all-fiber Doppler lidar at 1.55μm[J]. Infrared and Laser Engineering, 2011, 40(5): 844-847(in Chinese).
    [16]
    FAN Q, ZHU K Y, ZHENG J F, et al. Detection performance ana-lysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003(in Chin-ese). DOI: 10.3788/CJL201744.0210003
    [17]
    PAN J Y, WU Sh Y, LIU G, et al. Wind measurement techniques of coherent wind lidar[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724(in Chinese).
    [18]
    THOBOIS L, CARIOU J P, GULTEPE I. Review of lidar-based applications for aviation weather[J]. Pure and Applied Geophysics, 2019, 176(5): 1959-1976. DOI: 10.1007/s00024-018-2058-8
    [19]
    FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind lidar in a typical plateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chinese).
    [20]
    WANG G L, LIU L P, LIU Z S, et al. The application of sea-surface wind detection with Doppler lidar in Olympic sailing[J]. Advances in Atmospheric Sciences, 2011, 28(6): 1471-1480. DOI: 10.1007/s00376-011-9189-5
    [21]
    LIU Z S, WANG Z J, WU S H, et al. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar[J]. Optical Engineering, 2009, 48(6): 066002. DOI: 10.1117/1.3156054
    [22]
    CHAN P W. Application of LiDAR-based F-factor in wind shear alerting[J]. Meteorologische Zeitschrift, 2012, 21(2): 193-204. DOI: 10.1127/0941-2948/2012/0321
    [23]
    CHAN P W, SHUN C M. Aviation applications of the pulsed doppler LiDAR-experience in Hong Kong[J]. The Open Atmosphe-ric Science Journal, 2009, 3(1): 138-146. DOI: 10.2174/1874282300903010138
    [24]
    SHUN C M, CHAN P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(5): 637-655.
    [25]
    LEE Y F, CHAN P W. LIDAR-based F-factor for wind shear alerting: Different smoothing algorithms and application to departing flights[J]. Meteorological Applications, 2014, 21(1): 86-93. DOI: 10.1002/met.1434
    [26]
    ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using lidar and other data. Laser Technology, 2020, 44(5): 563-569(in Chinese).
    [27]
    ZHANG H W, WU S H, WANG Q Ch, et al. Airport low-level wind shear lidar observation at Beijing Capital International Airport[J]. Infrared Physics & Technology, 2019, 96: 113-122.
    [28]
    WU Zh X, WANG Sh G, SHANG K Zh, et al. The characteristic of momentum transfer during a cold strong wind process[J]. Journal of Desert Research, 2016, 36(2): 467-473(in Chinese).
  • Cited by

    Periodical cited type(16)

    1. 王鑫洋,郑佳锋,黄轩,陈杨瑞雪,任涛. 一次典型高原低空风切变的成因和发展演变特征研究. 成都信息工程大学学报. 2025(01): 72-78 .
    2. 白寒冰,郑佳锋,杜星,车玉章. 基于1.55μm激光雷达的雷暴风切变结构研究. 应用激光. 2024(01): 86-96 .
    3. 朱崔莹,禹智斌,范甜,李肖雅,康晓华,尹传利,桑婧隺,王彩霞,管军. 基于激光雷达低空风切变监测的逐点滑动分析. 气象水文海洋仪器. 2024(02): 1-6 .
    4. 梁志,师宇,张哲,胡非. 大气稳定度对边界层垂直风切变的影响. 中国科学院大学学报(中英文). 2024(03): 365-374 .
    5. 华志强,黄轩,赵启娜,田维东,孙永鑫. 西宁机场低空风切变特征统计及预警指标初探. 民航学报. 2024(03): 99-103+169 .
    6. 刘晓明. 激光雷达识别低空风切变的方法和效果. 激光技术. 2024(03): 416-424 . 本站查看
    7. 牛向华,黄轩,朱文会,郑佳锋,唐顺仙,任涛,程振. 1.55μm激光雷达高原机场下击暴流探测应用研究. 激光技术. 2024(03): 318-326 . 本站查看
    8. 王楠,程海艳,尹才虎. 测风激光雷达对孤立雷暴引发湿下击暴流的结构分析. 激光技术. 2024(05): 643-650 . 本站查看
    9. 丁魅理,拉巴卓嘎,旦增卓嘎,洛桑扎西. 拉萨贡嘎机场一次低空风切变天气过程分析. 科学技术创新. 2024(23): 5-8 .
    10. 王晓烺,杜星. 银川河东机场2次低空风切变天气过程的对比分析. 科技创新与应用. 2023(02): 11-15 .
    11. 梁志,刘磊,师宇,胡非. 山地地形对激光雷达湍流测量精度的影响. 气候与环境研究. 2023(02): 207-215 .
    12. 梁希豪,杨寅,冯亮,杜星,王清平. 基于测风激光雷达银川机场动量下传大风特征研究. 激光技术. 2023(03): 432-438 . 本站查看
    13. 王楠,尹才虎,刘晓明,高晋徽. 乌鲁木齐机场一次冷锋型低空风切变过程的LiDAR分析. 激光技术. 2023(04): 565-571 . 本站查看
    14. 张兆阳,孙宏,王奇,孙启祯,赵新斌,王一. 基于AHP和QAR数据的风切变风险管控. 项目管理技术. 2023(09): 115-120 .
    15. 吴俊杰,王耀辉,徐足音,任佳莉,张博义. 基于多普勒激光雷达的机场边界层高度研究. 激光技术. 2023(06): 778-785 . 本站查看
    16. 杜星,王海霞,梁希豪,赵云鹏. 银川河东机场低空风切变气候特征统计及分型研究. 科技创新与应用. 2022(14): 61-65 .

    Other cited types(2)

Catalog

    Article views (11) PDF downloads (8) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return