Advanced Search
WANG Nan, YIN Caihu, LIU Xiaoming, GAO Jinwei. Analysis of LiDAR in a cold front low-level wind shear in Urumqi Airport[J]. LASER TECHNOLOGY, 2023, 47(4): 565-571. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.019
Citation: WANG Nan, YIN Caihu, LIU Xiaoming, GAO Jinwei. Analysis of LiDAR in a cold front low-level wind shear in Urumqi Airport[J]. LASER TECHNOLOGY, 2023, 47(4): 565-571. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.019

Analysis of LiDAR in a cold front low-level wind shear in Urumqi Airport

More Information
  • Received Date: May 16, 2022
  • Revised Date: September 18, 2022
  • Published Date: July 24, 2023
  • In order to study the characteristics of the structure of wind shear, the low-level wind shear at Urumqi Airport on 2021-11-26 was analyzed by using the FC-Ⅲ wind light detection and ranging(LiDAR) data, the reanalysis data of National Centers for Environmental Prediction, and conventional meteorological observation data. The evolution of wind shear was calculated. The results show that, the wind shear process occurred under the condition of a specific terrain wind. The small scale of cold air caused the significant changes in wind direction and speed, the bottom of the southeast jet and the northwest wind belt form a vertical shear area inclined upward which led to the cold-front type of low-level wind shear. The wind field around airports had been changed 1 h before the occurrence of wind shear. And the wind shear area was detected 10 min earlier than the report from aircraft which based on the plan position indicator model, the area where wind shear occurred was significant variations in the southeast wind speed, and also followed the movement of cold air to the west. During the movement of cold air, the southeast wind layer became thinner and retreated to the west. Near the glide path 07#. There was not only a sharp reduction of the frontal crosswind, but also a significant change in wind direction. The cold air was wedged from 25# to 07# during 08:30~10:25. The small-scale of cold air activity at low altitude was captured, and a backward of evolution process and structure was figured out, which showed that the pathway entering the airport from northeast, and issued the wind shear warning. The study is helpful to improve the meteorological service support capacity.
  • [1]
    ICAO. Manual on low-level wind and turbulence[M]. Montréal, Canada: International Civil Aviation Organization, 2005: 10-47.
    [2]
    FROST W. Flight in low-level wind shear: NASA contractor report 3678[R]. Washington DC, USA: NASA, 1983: 1-70.
    [3]
    FUJITA T T, CARACENA F. An analysis of three weather-related aircraft accidents[J]. Bulletin of the American Meteorological Society, 1977, 58(11) : 1164-1181. DOI: 10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2
    [4]
    GULTEPE I, SHARMAN R, WILLIAMS P D, et al. A review of high impact weather for aviation meteorology[J]. Pure and Applied Geophysics, 2019, 176(5): 1869-1921. DOI: 10.1007/s00024-019-02168-6
    [5]
    王青梅, 郭利乐. 激光测风雷达在机场低空风切变探测中的应用[J]. 激光与红外, 2012, 42(12): 1324-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201212003.htm

    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12): 1324-1328(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201212003.htm
    [6]
    THOBOIS L, CARIOU J P, GULTEPE I. Review of lidar-based a-pplications for aviation weather[J]. Pure and Applied Geophysics, 2019, 176(5): 1959-1976. DOI: 10.1007/s00024-018-2058-8
    [7]
    CHAN P W. Application of LiDAR-based F-factor in wind shear alerting[J]. Meteorologische-Zeitschrift, 2012, 21(2): 86-93. http://www.onacademic.com/detail/journal_1000040855819310_3431.html
    [8]
    CHAN P W, SHUN C M. Aviation applications of the pulsed Doppler LiDAR-experience in HongKong[J]. The Open Atmospheric Science Journal, 2009, 3: 138-146. DOI: 10.2174/1874282300903010138
    [9]
    SHUN C M, CHAN P W. Applications of an infrared Doppler lidar in detection of wind shear[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(5): 637-643.
    [10]
    LEE Y F, CHAN P W. LiDAR-based F-factor for wind shear alerting: Different smoothing algorithms and application to departing flights[J]. Meteorological Applications, 2014, 21(1): 86-93. DOI: 10.1002/met.1434
    [11]
    ZHANG H W, WU S H, WANG Q C, et al. Airport low-level wind shear lidar observation at Beijing Capital International Airport[J]. Infrared Physics & Technology, 2019, 96: 113-122.
    [12]
    李肖雅, 禹智斌, 刘冬, 等. 大风背景下首都机场两条跑道低空风切变特征统计[J]. 红外与激光工程, 2021, 50(12): 294-302. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112024.htm

    LI X Y, YU Zh B, LIU D, et al. Low-level wind shear characteristic statistic of two runways of Beijing Capital International Airport based on strong wind background[J]. Infrared and Laser Engineering, 2021, 50(12): 294-302(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112024.htm
    [13]
    李瑶婷, 梁明增, 李耀辉, 等. 激光测风雷达在广汉机场的一次应用分析[J]. 民航学报, 2021, 5(6): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202106013.htm

    LI Y T, LIANG M Z, LI Y H, et al. Analysis of an application of laser wind radar in Guanghan Airport[J]. Journal of Civil Aviation, 2021, 5(6): 64-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202106013.htm
    [14]
    代冰冰, 何敏, 杨靖新, 等. 利用激光测风雷达判别机场晴空风切变事件成因[J]. 气象科技, 2021, 49(4): 589-596. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202104011.htm

    DAI B B, HE M, YANG J X, et al. Causal analysis of a clear sky wind shear event at a plateau airport in southwest china using lidar data[J]. Meteorological Science and Technology, 2021, 49(4): 589-596(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202104011.htm
    [15]
    范琪, 朱晓林, 周鼎富, 等. 激光测风雷达分析典型高原机场风场特征[J]. 激光技术, 2020, 44(5): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind lidar in a typical plateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001
    [16]
    华志强, 黎倩, 黄轩, 等. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5): 600-604. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012

    HUA Zh Q, LI Q, HUANG X, et al. Analysis of the typical application of laser wind measurement radar in aviation support[J]. Laser Technology, 2020, 44(5): 600-604(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.012
    [17]
    黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

    HUANG X, ZHENG J F, ZHANG J, et al. A study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010
    [18]
    张涛, 黎倩, 郑佳锋, 等. 激光测风雷达研究微下击暴流引发的低空风切变[J]. 激光技术, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using lidar and other data[J]. Laser Technology, 2020, 44(5): 563-569(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007
    [19]
    黎倩, 郑佳锋, 朱克云, 等. 基于激光测风雷达的低空急流结构特征研究[J]. 激光技术, 2020, 44(5): 557-562. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.006

    LI Q, ZHENG J F, ZHU K Y, et al. Structural characteristics of low-level jet based on wind lidar[J]. Laser Technology, 2020, 44(5): 557-562(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.006
    [20]
    孙少明, 张茜, 朱雯娜, 等. 乌鲁木齐国际机场典型低空风切变事件分析[J]. 民航学报, 2021, 5(6): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202106017.htm

    SUN Sh M, ZHANG Q, ZHU W N, et al. Analysis of typical low-level windshear events over the Urumqi International Airport[J]. Journal of Civil Aviation, 2021, 5(6): 81-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202106017.htm
    [21]
    冯力天, 周杰, 范琪, 等. 应用于民航机场风切变探测与预警的三维激光测风雷达[J]. 光子学报, 2019, 48(5): 0512001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm

    FENG L T, ZHOU J, FAN Q, et al. Three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5): 0512001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (10) PDF downloads (5) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return