Advanced Search
CHAO Xiangrui, HUANG Yong, CHEN Zipeng, XU Xuehu, LI Wenjian, WANG Ning, ZHANG Zhihu. Effect of laser remelting on microstructure and properties of In718 cladding layer[J]. LASER TECHNOLOGY, 2023, 47(4): 506-512. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.010
Citation: CHAO Xiangrui, HUANG Yong, CHEN Zipeng, XU Xuehu, LI Wenjian, WANG Ning, ZHANG Zhihu. Effect of laser remelting on microstructure and properties of In718 cladding layer[J]. LASER TECHNOLOGY, 2023, 47(4): 506-512. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.010

Effect of laser remelting on microstructure and properties of In718 cladding layer

More Information
  • Received Date: May 25, 2022
  • Revised Date: July 05, 2022
  • Published Date: July 24, 2023
  • In order to solve the problem of poor mechanical properties of laser cladding In718 alloy, different scanning speeds were selected to carry out laser remelting treatment of the cladding layer. Optical microscope, scanning electron microscope and energy dispersive spectrometer were used to observe the microstructure and characteristics and to detect the composition of different phases. The influence of microsegregation on the microstructure was then analyzed. The microhardness and tensile strength of the coating were tested by mechanical testing equipment. The results show that the Laves phase is mainly caused by the segregation of Nb and Mo elements. Compared with the non-remelted coating, the pores of the remelted coating are significantly reduced, and different remelting scanning speeds have different effects on the structure and properties. The Laves phase volume fraction of four coatings respectively decreased from 34.1% to 24.6%, 16.7%, and 19.6%, the average hardness respectively increased from 250.3 HV to 261.5 HV, 276.9 HV, and 268.0 HV. The tensile strength respectively increased from 678 MPa to 728 MPa, 879 MPa, and 808 MPa. However, the effect of remelted coating on elongation is not obvious. The optimum remelting scanning speed is 15 mm/s, which has the lowest Laves phase content and the highest average microhardness and tensile strength. Laser remelting can effectively improve the morphology of the cladding layer, reduce the porosity, reduce or inhibit the precipitation of Laves phase. Reducing the Laves phase to improve the mechanical properties of In718 alloy. This research establishes a theoretical foundation for the subsequent remanufacturing of centrifugal cast ductile iron pipes molds.
  • [1]
    黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019

    HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
    [2]
    吴腾, 师文庆, 谢林圯. 激光熔覆铁基TiC复合涂层成形质量的控制方法[J]. 激光技术, 2022, 46(3): 344-354. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008

    WU T, SHI W Q, XIE L Y. Forming quality control method of laser cladding Fe-based TiC composite coating[J]. Laser Technology, 2022, 46(3): 344-354(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
    [3]
    赵欣鑫, 肖华强, 游川川. TC4表面激光熔覆TiAl合金涂层的工艺和组织性能[J]. 激光技术, 2021, 45(6): 697-702. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004

    ZHAO X X, XIAO H Q, YOU Ch Ch, et al. Process and microstructure properties of laser cladding TiAl alloy coating on TC4 surface[J]. Laser Technology, 2021, 45(6): 697-702(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004
    [4]
    ZHANG Y, LI Z, NIE P, et al. Effect of cooling rate on the microstructure of laser-remelted Inconel718 coating[J]. Metallurgical & Materials Transactions, 2013, A44(12): 5513-5521. DOI: 10.1007/s11661-013-1903-8
    [5]
    CHLEBUS E, GRUBER K, KUŹNICKA B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel718 processed by selective laser melting[J]. Materials Science & Engineering, 2015, A639: 647-655. https://www.sciencedirect.com/science/article/pii/S2214785317327189
    [6]
    TABERNERO I, LAMIKIZ A, MARTÍNEZ S, et al. Evaluation of the mechanical properties of Inconel718 components built by laser cladding[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6): 465-470. https://www.sciencedirect.com/science/article/pii/S0890695511000344
    [7]
    鲁耀钟, 雷卫宁, 任维彬, 等. K418合金叶片激光再制造Inconel718覆层匹配与强化[J]. 激光技术, 2020, 44(1): 54-60. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.010

    LU Y Zh, LEI W N, REN W B, et al. Matching and strengthening between Inconel718 cladding and K418 alloy blades by laser remanufacturing[J]. Laser Technology, 2020, 44(1): 54-60(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.010
    [8]
    张杰, 张群莉, 姚建华. 激光熔覆工艺参数对In718合金组织及元素偏析的影响[J]. 热加工工艺, 2022, 51(19): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219006.htm

    ZHANG J, ZHANG Q L, YAO J H. Effect of laser cladding process parameters on microstructure and element segregation of In718 alloy[J]. Hot Working Technology, 2022, 51(19): 30-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219006.htm
    [9]
    张尧成. 激光熔覆Inconel718合金涂层的成分偏聚与强化机理研究[D]. 上海: 上海交通大学, 2013: 61-90.

    ZHANG Y Ch. Studies on component segregation and strengthening mechanism of laser cladding Inconel718 alloy coating[D]. Shanghai: Shanghai Jiaotong University, 2013: 61-90(in Chinese).
    [10]
    LÜ H, LI Z, LI X, et al. Effect of vanadium content on the microstructure and mechanical properties of In718 alloy by laser cladding[J]. Materials, 2021, 14(9): 2362-2364.
    [11]
    CHENG H M, LIU F C, et al. Microstructure and tensile property of electromagnetic stirring assisted laser repaired Inconel718 superalloy-sciencedirect[J]. Rare Metal Materials and Engineering, 2018, 47(10): 2949-2956. https://www.sciencedirect.com/science/article/pii/S1875537218302169
    [12]
    聂学武, 周建忠, 徐家乐, 等. 超声振幅对激光熔覆WC/In718复合涂层组织及性能的影响[J]. 表面技术, 2020, 49(9): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202009024.htm

    NIE X W, ZHOU J Zh, XU J L, et al. Effect of ultrasound amplitude on microstructure and properties of laser cladding WC/In718 composite coatings[J]. Surface Technology, 2020, 49(9): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202009024.htm
    [13]
    张杰, 张群莉, 陈智君, 等. 固溶温度对激光增材制造Inconel718合金组织和性能的影响[J]. 表面技术, 2019, 48(2): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201902008.htm

    ZHANG J, ZHANG Q L, CHEN Zh J, et al. Effects of solution temperature on microstructure and properties of Inconel718 alloy fabricatedvia laser additive manufacturing[J]. Surface Technology, 2019, 48(2): 47-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201902008.htm
    [14]
    张群莉, 张杰, 李栋, 等. 不同时效温度下激光增材再制造In718合金层的组织与性能研究[J]. 稀有金属材料与工程, 2020, 49(5): 1785-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202005045.htm

    ZHANG Q L, ZHANG J, LI D, et al. Microstructure and properties of laser additive remanufactured In718 alloy with different aging temperatures[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1785-1792 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202005045.htm
    [15]
    席明哲, 高士友. 激光快速成形Inconel718超合金拉伸力学性能研究[J]. 中国激光, 2012, 39(3): 0303004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201203014.htm

    XI M Zh, GAO Sh Y. Research on tensile properties of Inconel718 superalloy fabricated by laser rapid forming process[J]. Chinese Journal of Lasers, 2012, 39(3): 0303004(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201203014.htm
    [16]
    CONG D, HONG Z, REN Z, et al. Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process[J]. Optics & Lasers in Engineering, 2014, 54(3): 55-61.
    [17]
    张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50% WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202105045.htm

    ZHANG L T, LI H T, JIA R N, et al. Preparation and properties of laser remelted Ni60/50% WC composite coating[J]. Metal Heat Treatment, 2021, 46(5): 229-234(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202105045.htm
    [18]
    GUBENKO S I, NIKUL'CHENKO I A. Fragmentation of nonmetallic inclusions during local remelting upon laser steel processing[J]. Steel in Translation, 2020, 50(3): 203-208.
    [19]
    陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006

    CHEN Z H, SUN W L, HUANG Y, et al. Microstructure and properties of nickel-based superalloy laser cladding coatings[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
    [20]
    陈源. 激光增材制造Inconel718合金裂纹形成机制及其控制[D]. 上海: 上海交通大学, 2017: 39-45.

    CHEN Y. Studies on formation mechanism and control methods of cracking in laser additive manufactured Inconel718 alloy[D]. Shanghai: Shanghai Jiaotong University, 2017: 39-45(in Chinese).
    [21]
    XIN B, REN J, WANG X, et al. Effect of laser remelting on cladding layer of Inconel718 superalloy formed by laser metal deposition[J]. Materials, 2020, 13(21): 4927.
    [22]
    黄卫东. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007: 284-300.

    HUANG W D. Laser stereoforming[M]. Xi'an: Northwestern Polytechnical University Press, 2007: 284-300(in Chinese).
  • Related Articles

    [1]PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013
    [2]TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019
    [3]PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
    [4]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [5]ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023
    [6]WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013
    [7]WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023
    [8]WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019
    [9]YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.
  • Cited by

    Periodical cited type(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 .
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 .
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 .
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 .
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 .
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 .
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 .
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 .
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 .
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 .
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 .
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 .
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 .
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 .
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 .
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 .
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 .
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 .
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 .
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 .

    Other cited types(12)

Catalog

    Article views (680) PDF downloads (8) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return