Advanced Search
PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
Citation: PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013

Identification of aircraft wake vortex based on k-nearest neighbor

More Information
  • Received Date: July 16, 2019
  • Revised Date: September 18, 2019
  • Published Date: July 24, 2020
  • To identify aircraft wake vortex by pulsed doppler LiDAR's characteristics, a classification model based on k-nearest neighbor (KNN) was established in this paper. This approach by combining Hallock-Burnham model with pulsed doppler LiDAR's characteristics to extract the feature parameters of radial velocity of wind field was pursued. Based on the test dataset, the KNN was employed to identify aircraft wake vortex in the context of nonuniform wind field. The performance of the proposed method was evaluated in terms of the accuracy (ACC) and the area under ROC curve (AUC). The ACC and the AUC of our technique on test dataset are 0.772 and 0.855, respectively. Experimental results are presented to illustrate the validity and robustness of the proposed approach to aircraft wake vortex.
  • [1]
    MURPHY B, O'CALLAGHAN J, FOX M, et al. Overview of the structures investigation for the american airlines flight 587 investigation[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. New York, USA: IEEE, 2013: 3369-3373. 10.2514/6.2005-2251
    [2]
    GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. DOI: 10.1016/S0376-0421(02)00004-0
    [3]
    CORNELIUS J O, RUTISHAUSER D K. Enhanced airport capacity through safe, dynamics reductions in aircraft separation//Aircraft VOrtex Spacing System (AVOSS).New York, USA: IEEE, 2001: 77-103.
    [4]
    HOLZÄPFEL F, GERZ T, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS Part Ⅰ: Design[J]. Air Traffic Control Quarterly, 2008, 17(9):301-322. https://core.ac.uk/reader/11145098
    [5]
    GERZ T, HOLZÄPFEL F, GERLING W, et al. The wake vortex prediction and monitoring system WSVBS(Part Ⅱ: Performance and ATC integration at Frankfurt airport)[J]. Air Traffic Control Quarterly, 2009, 17(4): 323-346. DOI: 10.2514/atcq.17.4.323
    [6]
    LIANG H J, DENG W X, LIANG Y A, et al. Review of aerocraft wake vortex separation dynamic reduction technology[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12):15-19(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/scbgxb201812004
    [7]
    HANNON S M, THOMSON J A. Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar[J]. Journal of Modern Optics, 1994, 41(11):2175-2196. DOI: 10.1080/09500349414552031
    [8]
    HARRIS M, YOUNG R I, KÖPP F, et al. Wake vortex detection and monitoring[J]. Aerospace Science and Technology, 2002, 6(5):325-331. DOI: 10.1016/S1270-9638(02)01171-9
    [9]
    XU Sh L, HU Y H, WU Y H. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12): 1826-1830(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201112017
    [10]
    PAN W J, ZHANG Q Y, ZHANG Q, et al. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2):233-237(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201902016
    [11]
    PAN W J, DUAN Y J, ZHANG Q, et al. Research on aircraft wake vortex recognition using AlexNet[J]. Opto-Electronic Engineering, 2019, 46(7): 190082(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gdgc201907013
    [12]
    ZHAO L Y, GU R P, WEI Z Q. Calculation of characteristics parameters of dynarnic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5):388-394(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YEKJ201805012.htm
    [13]
    LI H. Statistical learning method [M]. 2nd ed. Beijng: Tsinghua University Press, 2012:49-58(in Chinese).
    [14]
    COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 2003, 13(1):21-27. http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201106023
    [15]
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. DOI: 10.1016/j.patrec.2005.10.010
    [16]
    RUPPERT D. The elements of statistical learning: Data mining, inference, and prediction[J]. Journal of the American Statistical Association, 2004, 99(466):567-567. DOI: 10.1198/jasa.2004.s339
  • Related Articles

    [1]ZHOU Yu, HE Wei. Target recognition method of laser imaging fuze[J]. LASER TECHNOLOGY, 2023, 47(2): 267-272. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.017
    [2]LIU Cuilian, TAO Yuxiang, LUO Xiaobo, LI Qingyan. Hyperspectral image classification based on hybrid convolutional neural network[J]. LASER TECHNOLOGY, 2022, 46(3): 355-361. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.009
    [3]JIA Xiumei. Research on surface adaptive detection algorithm based on normal feature extraction[J]. LASER TECHNOLOGY, 2021, 45(5): 620-624. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.014
    [4]LIU Chang'an, SUN Shuming, ZHAO Lijuan. A lightweight network for power tower extraction from laser point cloud[J]. LASER TECHNOLOGY, 2021, 45(3): 367-372. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.018
    [5]HE Yide, ZHU Bin, WANG Xun, CHEN Hao, JIA Jing. Simulation model fidelity evaluation method based on key features[J]. LASER TECHNOLOGY, 2020, 44(4): 515-519. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.020
    [6]PAN Weijun, ZHANG Qingyu, ZHANG Qiang, LI Hua, WU Zhengyuan. Identification method of aircraft wake vortex based on Doppler lidar[J]. LASER TECHNOLOGY, 2019, 43(2): 233-237. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.016
    [7]FENG Wei, WANG Yude, ZHANG Lei. Deep feature extraction and classification recognition algorithm based on weighting and dimension reduction[J]. LASER TECHNOLOGY, 2018, 42(5): 666-672. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.016
    [8]ZHANG Baohua, LIU He, ZHANG Chuanting. Medical image fusion algorithm based on texture extraction by means of bidimensional empirical mode decomposition[J]. LASER TECHNOLOGY, 2014, 38(4): 463-468. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.007
    [9]SHI Yuan-ping, ZHU Tuo, CHEN Guo-qing, GAO Shu-mei, ZHENG Lei, MA Chao-qun. Identification for Wuliangye wine with fluorescent feature parameters[J]. LASER TECHNOLOGY, 2011, 35(5): 684-687. DOI: 10.3969/j.issn.1001-3806.2011.05.029
    [10]LIU Zhi-fang, YOU Zhi-sheng, Zhang Ji-ping. Face recognition using independent component analysis based on restricted mean field approximation[J]. LASER TECHNOLOGY, 2005, 29(6): 662-666.

Catalog

    Article views (7) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return