HTML
-
飞机上下翼面存在压力差,其经过的区域的空气受到扰动,最终呈现为一对涡旋的形式,其强度用涡环量来衡量。涡环量与飞机的重量成正比和飞机的速度成反比,初始涡环量Γ0用下式表示[1]:
式中,M, B分别表示飞机的质量和翼展,g为重力加速度,ρ为周围空气的密度,S为载荷系数,v为航空器速度,b0为初始涡核间距。
在模拟飞机尾涡剖面径向速度的模型中,Hallock-Burnham(HB)模型因使用实际数据进行修正且表述较为简单进而获得了广泛的应用,HB模型表示见下[1]:
式中, r为距涡核的距离,rc为涡核半径(通常设为0.052b0),vt(r)表示切向速度。
激光雷达通过对大气气溶胶粒子的探测,在晴空条件下能对航空器尾涡进行较为精确的刻画。由于飞机尾涡的影响面是对飞机飞过垂直平面的空气扰动,因此, 常规的探测方式是对飞机的飞行轨迹的垂直剖面进行距离高度指示器(range height indicator, RHI)模式的探测,具体如图 1所示。
图 1中,O1,O2,O分别为左、右涡心和激光雷达探测点; α1,α2,θ分别表示雷达RHI扫描时左、右涡和探测空间点俯仰角; d1,d2,d分别为激光雷达点距离左、右涡心和探测空间点的距离; r1,r2分别表示探测空间点距离左、右涡心的距离。
激光雷达处于RHI模式探测时,方位角固定,改变俯仰角对激光雷达接收回波做快速傅里叶变换,得到固定距离门的径向风速速度,负值为接近激光雷达方向的速度,正值为远离激光雷达方向的速度,数值的大小即为速度的值。当雷达从设定的扫描俯仰角扫描一周时,即得到一个切面的径向速度风场:
式中,ρi表示距离激光雷达的径向距离, θj表示激光雷达的俯仰角角度, vr表示该极坐标对应的径向速度, n和m分别是激光雷达探测扫描所得到的俯仰角离散值的个数和径向距离门的个数,实地探测采用的激光雷达,距离门个数n=56。
以全球飞机类型数量最多的空客A320为例,其机型参量如表 1所示。
parameter value M 78000kg B 37.57m v 69.96m/s g 9.81m/s2 ρ 1.16kg/m3 S π/4 Table 1. Parameters of Airbus A320 and environment
将表 1中的机型参量和环境参量代入(1)式和(2)式,设定飞机左右涡的涡心距离地面的高度为50m,涡点连线的中点距离激光雷达的水平距离为200m,背景风场为静风。图 2a为依据这些参量所计算出的切向速率图。静风条件下HB模型得出的尾涡为左右对称的涡旋结构,最大切向速度值为15.30m/s。表 2中列出了实地探测中使用激光雷达的特征参量。
parameters value detection range 45m~6000m range resolution 15m angle resolution 0.1° laser source 1.55μm detection accuracy 0.1m/s Table 2. Main parameters of the LiDAR
受限于激光雷达探测原理,脉冲激光雷达扫描得到的速度为径向速度,相对切向速度,径向速度损失了垂直于雷达扫描径向上的速度分量, 且有限的径向分辨率和角度分辨率,所得到的径向速度为(3)式所示的离散数据。根据现场探测试验的实际参量,假设脉冲多普勒激光雷达探测精度良好,径向分辨率为15m,角度分辨率为0.2°,根据图 1中描述的位置关系和设置的参量,计算出图 2a的切向速度场激光雷达探测到的径向速度场, 如图 2b所示。此时最大径向速度值为7.87m/s,相对15.30m/s的最大切向速度值损失了接近一半,因此,使用传统尾涡模型在匹配激光雷达所探测的径向速度场时存在较大的误差。此外,根据HB模型计算结果可得,空客A320的尾流在静风条件下的径向风速场影响区域为长100m、高70m的矩形区域。
-
为评估不同k值的kNN分类方法的性能,采用准确率(accuracy, ACC)A、正预测值(positive predicted value,PPV)VPPV和真正率(true positive rate, TPR)RTPR作为评估指标,根据径向风场是否存在尾涡,已经KNN分类预测是否存在尾涡可得出该分类的混淆矩阵,如表 3所示[16]。
condition positive condition negative predicted condition positive true positive(TP) false positive(FP) predicted condition negative false negative(FN) true negative(TN) Table 3. Confusion matrix
准确率A表示正确识别存在尾涡和不存在尾涡的径向风速场数据占所有数据的比率:
正预测值VPPV实际存在的尾涡的径向风速场数据占识别存在的尾涡的径向风速场数据的比率:
真正率(true positive rate, TPR)RTPR为所有存在尾涡的径向风场数据中,成功识别的比率:
真负率(true negative rate, TNR)RTNR为所有不存在尾涡的径向风场数据中,成功识别的比率:
考虑实际应用中VPPV和RTPR有时差距过大,这里再额外纳入数值F1来综合评估KNN模型的分类性能:
根据第3节中提到的交叉验证法,在实地探测的1273组径向速度场数据中,随机选取30%作为测试集数据,其余70%作为训练集数据, 测试得出KNN分类方法不同k值下的性能如图 7所示。
训练集性能指标随着k值的增大,总体上呈现的为下降的趋势,而测试集性能指标随着k值的增大,性能指标总体均为先增大后减小,不同k值会显著影响该方法的性能。当k=11时,分类的结果如表 3所示。依据分类结果计算分类器的性能,如表 4所示。训练集的平均性能指标达到了0.816,其中A=0.796,测试集的平均性能指标达到了0.729,其中A=0.717,按照样本数量对训练集和测试集的加权A达到0.772,效果较好,因此本文中选择的是11NN分类方法。
data set TP FN FN TN train set 340 48 134 369 test set 84 23 85 190 Table 4. Results of 11NN classifier
data set ACC PPV TPR TNR F1 average train set 0.796 0.876 0.717 0.855 0.834 0.816 test set 0.717 0.785 0.497 0.892 0.750 0.729 Table 5. Performance of 11NN classifier
作为评估预测与分类性能的指标,受试工作者曲线(receiver operating characteristic, ROC)已被广泛地用于医学以及机器学习等领域。当正负数据发生剧烈变化时候,其它指标也随时会发生较大的变化,而ROC曲线却能接近不变, 因此ROC曲线可全面客观地评价模型的性能, AUC(area under curve)是ROC曲线下面积,用于定量的评价分类型性能,能够在一定程度上衡量模型的鲁棒性。本文中提出的KNN的方法很大程度上受限于测试的数据,同样的模型并不一定具有通用性,因此使用ROC和AUC来评价11NN分类方法的通用性能。
图 8a是11NN分类器中不同阈值下的实际存在尾涡和实际不存在尾涡的数据概率分布。据此能得到对应的11NN分类器所得到的ROC曲线,如图 8b所示,其远离TPR=FPR的虚线,相应的AUC的值为0.855,说明11NN分类器在正负数据发生变化的同时,该分类器的性能不会发生较大的变化,说明11NN分类器具备了较好的鲁棒性,根据上面得出11NN的性能参量,说明本文中提出的方法能够很好地实现对尾涡的预测与分类。