Citation: | PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013 |
[1] |
MURPHY B, O'CALLAGHAN J, FOX M, et al. Overview of the structures investigation for the american airlines flight 587 investigation[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. New York, USA: IEEE, 2013: 3369-3373. 10.2514/6.2005-2251
|
[2] |
GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. DOI: 10.1016/S0376-0421(02)00004-0
|
[3] |
CORNELIUS J O, RUTISHAUSER D K. Enhanced airport capacity through safe, dynamics reductions in aircraft separation//Aircraft VOrtex Spacing System (AVOSS).New York, USA: IEEE, 2001: 77-103.
|
[4] |
HOLZÄPFEL F, GERZ T, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS Part Ⅰ: Design[J]. Air Traffic Control Quarterly, 2008, 17(9):301-322. https://core.ac.uk/reader/11145098
|
[5] |
GERZ T, HOLZÄPFEL F, GERLING W, et al. The wake vortex prediction and monitoring system WSVBS(Part Ⅱ: Performance and ATC integration at Frankfurt airport)[J]. Air Traffic Control Quarterly, 2009, 17(4): 323-346. DOI: 10.2514/atcq.17.4.323
|
[6] |
LIANG H J, DENG W X, LIANG Y A, et al. Review of aerocraft wake vortex separation dynamic reduction technology[J]. Journal of Ordnance Equipment Engineering, 2018, 39(12):15-19(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/scbgxb201812004
|
[7] |
HANNON S M, THOMSON J A. Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar[J]. Journal of Modern Optics, 1994, 41(11):2175-2196. DOI: 10.1080/09500349414552031
|
[8] |
HARRIS M, YOUNG R I, KÖPP F, et al. Wake vortex detection and monitoring[J]. Aerospace Science and Technology, 2002, 6(5):325-331. DOI: 10.1016/S1270-9638(02)01171-9
|
[9] |
XU Sh L, HU Y H, WU Y H. Identification of aircraft wake vortex based on Doppler spectrum features[J]. Journal of Optoelectronics·Laser, 2011, 22(12): 1826-1830(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201112017
|
[10] |
PAN W J, ZHANG Q Y, ZHANG Q, et al. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2):233-237(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201902016
|
[11] |
PAN W J, DUAN Y J, ZHANG Q, et al. Research on aircraft wake vortex recognition using AlexNet[J]. Opto-Electronic Engineering, 2019, 46(7): 190082(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gdgc201907013
|
[12] |
ZHAO L Y, GU R P, WEI Z Q. Calculation of characteristics parameters of dynarnic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5):388-394(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YEKJ201805012.htm
|
[13] |
LI H. Statistical learning method [M]. 2nd ed. Beijng: Tsinghua University Press, 2012:49-58(in Chinese).
|
[14] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 2003, 13(1):21-27. http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201106023
|
[15] |
FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874. DOI: 10.1016/j.patrec.2005.10.010
|
[16] |
RUPPERT D. The elements of statistical learning: Data mining, inference, and prediction[J]. Journal of the American Statistical Association, 2004, 99(466):567-567. DOI: 10.1198/jasa.2004.s339
|