Advanced Search
HE Yide, ZHU Bin, WANG Xun, CHEN Hao, JIA Jing. Simulation model fidelity evaluation method based on key features[J]. LASER TECHNOLOGY, 2020, 44(4): 515-519. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.020
Citation: HE Yide, ZHU Bin, WANG Xun, CHEN Hao, JIA Jing. Simulation model fidelity evaluation method based on key features[J]. LASER TECHNOLOGY, 2020, 44(4): 515-519. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.020

Simulation model fidelity evaluation method based on key features

More Information
  • Received Date: August 25, 2019
  • Revised Date: October 10, 2019
  • Published Date: July 24, 2020
  • The method of extracting features of model, which was the core of tracking, was employed to evaluate the fidelity of infrared simulation model. By analyzing the kernel of tracking process, the image of a partial field around the center of target was chosen to evaluate the target model. Based on the existing evaluating methods of the infrared simulation model, a typical object-tracking algorithm was adopted to design the experiment. Following theoretical analysis, the corresponding experiment was then carried out. Result shows that the similar target model is more than 2 times as much as the dissimilar model based on the key features extracting method, and the difference between them can even get to 10 times. Therefore, the key feature extraction algorithm is a practical and feasible method to verify the validity of the target model. This evaluation method can provide theoretical guidance for the evaluation of model fidelity in the field of infrared target detection.
  • [1]
    QU Y, TIAN X F, MA L H, et al. Application of VV & A in infrared target simulator and its fidelity evaluation[J]. Infrared, 2011, 32(7):28-33(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWAI201107006.htm
    [2]
    ZHOU Y F, ZHAO J, WANG D Y, et al. Detection and evaluation of fidelity and reliability of infrared target ship[J]. Infrared, 2013, 34(7):39-44(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hongw201307009
    [3]
    LI H, WANG M, GUO Zh H, et al. Fidelity research on IR capturing and tracking device based on digital image injection simulation test[J]. Modern Defense Technology, 2018, 46(2): 193-201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xdfyjs201802030
    [4]
    MA T, GENG M. Simulation of infrared target detection system[J]. Electro-Optic Technology Application, 2017, 32(2):62-67(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201804020
    [5]
    GONG Y, WANG Q Q, SHAN B, et al. Quantized fidelity evaluation scheme of laser target simulator[J].Infrared and Laser Engineering, 2016, 45(12):124-129(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201612021
    [6]
    TIAN X F, MA L H, ZHAO Sh H, et al. Fidelity evaluation scheme for IR target simulation[J].Semiconductor, 2012, 33(1):135-140(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bdtgd201201033
    [7]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025429678/
    [8]
    BAY H, TUYTELAARS T, van GOOL L. Surf: Speeded up robust features[C]//The 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006: 404-417. 10.1007/11744023_32
    [9]
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2010: 2544-2550. 10.1109/CVPR.2010.5539960
    [10]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G. Image net classification with deep convolutional neural networks[C]// Twenty-fifth Conference on Neural Information Processing Systems. New York, USA: IEEE, 2012: 1097-1105. 10.1145/3065386
    [11]
    NEYSHABUR B, BHOJANAPALLI S, MCALLESTER D, et al. Exploring generalization in deep learning[C]//Thirty-first Conference on Neural Information Processing Systems. New York, USA: IEEE, 2017: 5949-5958. DOI: 10.5555/3295222.3295344
    [12]
    SONODA S, MURATA N. Neural network with unbounded activation functions is universal approximator[J]. Applied and Computational Harmonic Analysis, 2015, 43(2):233-268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0b2ed9ce0b134e51752190574bd8c70
    [13]
    MA S, BELKIN M. Diving into the shallows: a computational perspective on large-scale shallow learning[C]//Thirty-first Conference on Neural Information Processing Systems. New York, USA: IEEE, 2017: 3781-3790. https://arxiv.org/abs/1703.10622
    [14]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596. DOI: 10.1109/TPAMI.2014.2345390
    [15]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 6517-6525. 10.1109/CVPR.2017.690
    [16]
    DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[C]//Proceedings of the 31st International Conference on Machine Learning. New York, USA: IEEE, 2014: 647-655. 10.1097/00003643-201406001-00333
    [17]
    ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//The 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 818-833. https://arxiv.org/abs/1311.2901
    [18]
    LU Z, PU H, WANG F, et al. The expressive power of neural network: A view from the width[C]//Thirty-first Conference on Neural Information Processing Systems. New York, USA: IEEE, 2017: 6231-6239. DOI: 10.5555/3295222.3295371
    [19]
    YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Twenty-eighth Conference on Neural Information Processing Systems. New York, USA: IEEE, 2014: 3320-3328. DOI: 10.5555/2969033.2969197
    [20]
    HU H, ZHOU G T, DENG Z, et al. Learning structured inference neural networks with label relations[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 2960-2968. 10.1109/CVPR.2016.323
    [21]
    DENG Z, VAHDAT A, HU H, et al. Structure inference machine: Recurrent neural networks for analyzing relations in group activity recognition[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 4772-4781. 10.1109/CVPR.2016.516
  • Related Articles

    [1]CHEN Xunlin, YANG Yujun. Fast template matching for laser cutting based on niche genetic algorithm[J]. LASER TECHNOLOGY, 2019, 43(1): 125-130. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.025
    [2]XU Benzhi, QI Lijun, WANG Wei, ZHU Xiao, WANG Hailin, ZHU Guangzhi, ZHU Changhong. Study on the optimum matching parameters of the combined laser drilling[J]. LASER TECHNOLOGY, 2018, 42(1): 5-10. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.002
    [3]XIONG Cuixiu. Effect of dispersion on longitudinal mode interval of a Fabry-Perot interferometer[J]. LASER TECHNOLOGY, 2015, 39(5): 637-641. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.011
    [4]ZHAO Yu, MA Kezhen, YANG Dechao, GUO Zebin, ZHANG Wendong, XUE Chenyang, YAN Shubin. Research of vernier effect of ring resonator in sensor fields[J]. LASER TECHNOLOGY, 2014, 38(3): 293-296. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.002
    [5]PU Liang, YE Yu-tang, WU Yun-feng, WANG Yu-lin, LIU Li. Laser interferometer signal processing based on empirical mode decomposition[J]. LASER TECHNOLOGY, 2011, 35(3): 299-301,311. DOI: 10.3969/j.issn.1001-3806.2011.03.003
    [6]HAN Yong-fei, CHEN Zhen-qiang, LI Jing-zhao, LIN Lang, LI Zhen, WANG Guo-fu. Research of noncritical phase-matching of BIBO crystal[J]. LASER TECHNOLOGY, 2009, 33(5): 466-469. DOI: 10.3969/j.issn.1001-3806.2009.05.006
    [7]LI Mei-ju, SU Xian-yu. Stereo matching by means of digital speckle[J]. LASER TECHNOLOGY, 2004, 28(5): 550-553.
    [8]Chen Houdao, Zhou Gang, Wang Congjun, Huang Shuhuai. An algorithm for laser stripe matching based on the epipolar constraint[J]. LASER TECHNOLOGY, 2003, 27(6): 584-587.
    [9]Li Zhengjia, Xia Wenjian, Zhu Changhong, Ying Huashan, Qiu Junjin. Study on the dynamic mode matching of multirod solid state lasers[J]. LASER TECHNOLOGY, 1998, 22(5): 284-287.
    [10]Zhang Zhi-jun, Wu Zheng-de, Fan Yong, Tang Xiao-hong. Matching technology for high speed laser diode[J]. LASER TECHNOLOGY, 1995, 19(4): 239-243.
  • Cited by

    Periodical cited type(3)

    1. 聂鹏程,余先伦,刘嘉伟,关莉珍,王雨行. 切趾函数光纤布拉格光栅的光谱特性研究. 激光杂志. 2023(04): 114-118 .
    2. 唐健峰,季树滨,车雅良,张灵艺,张引发. 光纤布拉格光栅制作中心波长控制技术. 激光与光电子学进展. 2017(07): 123-127 .
    3. 李凯,辛璟焘,夏嘉斌,祝连庆. 基于电弧等离子体的光纤光栅快速退火的研究. 激光技术. 2017(05): 649-653 . 本站查看

    Other cited types(1)

Catalog

    Article views (3) PDF downloads (6) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return