Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 46 Issue 6
Nov.  2022
Article Contents
Turn off MathJax

Citation:

Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback

  • In order to improve the performance of the He-Ne laser in the laser feedback measurement system, and solve the technical problem that the frequency cannot be stabilized by traditional methods when the laser feedback mirror is constantly moving, a closed-loop passive frequency stabilization system method based on temperature feedback was adopted to control the temperature of the laser tube, and the theoretical analysis and experimental verification was conducted. The stability of the system under different stabilization temperature and ambient temperature difference was studied. The experimental results show that the best temperature difference of the system is 25.6℃. After frequency stabilization under this temperature difference, the He-Ne laser's wavelength fluctuation range is 10-4, that is, the frequency stability reaches 1.61×10-7, and power drift is less that 3.20%. The system can adjust the frequency stabilization temperature point according to the change of the ambient temperature, and the frequency stabilization structure is simple, meet the requirements of laser feedback for general application system stability.
  • 加载中
  • [1]

    ZORKIN V S, CHULYAEVA E G, GOMOZKOVA E Y. Effect of magnetic fields on the dual-frequency active element of a He-Ne laser[J]. Journal of Optical Technology, 2020, 87(6): 338-341. doi: 10.1364/JOT.87.000338
    [2]

    KOK Y, IRELAND M J, ROBERTSON J G, et al. Low-cost scheme for high-precision dual-wavelength laser metrology[J]. Applied Optics, 2013, 52(12): 2808-2814. doi: 10.1364/AO.52.002808
    [3]

    WANG X B, SONG L K, ZHU H F. Measurement of wide-band phase retardation variation of wave-plates by means of continuous polarization interference method[J]. Laser Technology, 2012, 36(2): 258-261(in Chinese). doi: 10.3969/j.issn.1001-3806.2012.02.029
    [4]

    ZHONG L, HUANG W. Review of frequency stabilization of laser[J]. Machine Design & Research, 2006, 33(9): 25-27(in Chinese).
    [5]

    LI L D. Research on the system of Zeeman stabilized He-Ne laser made of zerdour[D]. Changsha: Graduate School of National University of Defense Technology, 2010: 8-9(in Chinese).
    [6]

    QIAN J, LIU Zh Y, SHI Ch Y, et al. Frequency stabilization of internal-mirror He-Ne lasers by air cooling[J]. Applied Optics, 2012, 51(25): 6084-6088. doi: 10.1364/AO.51.006084
    [7]

    FENG J. Research on water-cooling technology for frequency offset locking frequency stabilized laser[D]. Harbin: Harbin Institute of Technology, 2015: 6-7(in Chinese).
    [8]

    YAN M, GAO Zh Sh. The simple method research for measuring the phase retardation of wave-plates [J]. Laser Technology, 2005, 29(3): 233-236(in Chinese). doi: 10.3969/j.issn.1001-3806.2005.03.022
    [9]

    LIANG J, LONG X W. Stability analysis of beat frequency in double-longitudinal-mode He-Ne laser[J]. Acta Optica Sinica, 2009, 29(5): 1301-1304 (in Chinese). doi: 10.3788/AOS20092905.1301
    [10]

    REN L B, DING Y Ch, ZHOU L F, et al. Mid-frequency difference He-Ne ZB laser with elastic force-exerting and its frequency stabilization[J]. Infrared and Laser Engineering, 2008, 37(5): 814-817(in Chinese). doi: 10.3969/j.issn.1007-2276.2008.05.015
    [11]

    ZONG X B, ZHU J, LI Y, et al. Phase retardation measurement of wave-plate based on laser frequency splitting technology[J]. Laser Technology, 2003, 27(4): 293-306(in Chinese).
    [12]

    ZHANG Sh L. Principle of orthogonal polarization[M]. Beijing: Tsinghua University Press, 2005: 166-167(in Chinese).
    [13]

    EL-DIASTY F, SOBEE M A, HUSSIEN H, et al. A heterodyne laser system to study frequency stabilized Zeeman 633nm He-Ne lasers deficient in temperature steadiness[J]. MAPAN, 2011, 26(4): 295-302. doi: 10.1007/s12647-011-0027-0
    [14]

    TOSHIHIKO Y. Frequency stabilization of internal-mirror He-Ne(λ=633nm)lasers using the polarization properties[J]. Japanese Journal of Applied Physics, 2014, 19(11): 2181-2185.
    [15]

    XU L, ZHANG Sh L, TAN Y D, et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feed-back interferometry[J]. Review of Scientific Instruments, 2014, 85(8): 1693-1697.
    [16]

    CHEN X J, TANG X H, PENG H. Research of power stability for 3kW RF slab CO2 laser[J]. Laser Technology, 2017, 41(1): 91-93(in Chinese).
    [17]

    WANG Q, QIAN Y M, ZHANG Sh L. Thermal drift of frequency difference of frequency splitting laser with force-exerting[J]. Infrared and Laser Engineering, 2021, 50(2): 20200392 (in Chinese).
    [18]

    ZHOU H Q, XIA G Q, DENG T, et al. Influence of external cavity length variation on the lasing wavelength of the fiber grating external cavity semiconductor laser[J]. Laser Technology, 2005, 29(5): 476-490(in Chinese).
    [19]

    DIAO X F, TAN J B, HU P P, et al. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility[J]. Journal of Applied Optics, 2013, 52(3): 456-460.
    [20]

    YANG J H. Research on frequency stabilized technology of He-Ne laser with thermoelectric cooler[D]. Harbin: Harbin Institute of Technology, 2007: Ⅰ(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6) / Tables(3)

Article views(6090) PDF downloads(17) Cited by()

Proportional views

Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback

    Corresponding author: ZHANG Shulian, zsldpi@mail.tsinghua.edu.cn
  • 1. School of Mechanical Engineering, Nantong University, Nantong 226019, China
  • 2. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China

Abstract: In order to improve the performance of the He-Ne laser in the laser feedback measurement system, and solve the technical problem that the frequency cannot be stabilized by traditional methods when the laser feedback mirror is constantly moving, a closed-loop passive frequency stabilization system method based on temperature feedback was adopted to control the temperature of the laser tube, and the theoretical analysis and experimental verification was conducted. The stability of the system under different stabilization temperature and ambient temperature difference was studied. The experimental results show that the best temperature difference of the system is 25.6℃. After frequency stabilization under this temperature difference, the He-Ne laser's wavelength fluctuation range is 10-4, that is, the frequency stability reaches 1.61×10-7, and power drift is less that 3.20%. The system can adjust the frequency stabilization temperature point according to the change of the ambient temperature, and the frequency stabilization structure is simple, meet the requirements of laser feedback for general application system stability.

引言
  • He-Ne激光器因其相干性[1-2]等特性被广泛应用于机械和精密测量领域。在波片测量领域[3]激光器稳定性需达到10-6,但在偏振回馈系统中功率不稳定的问题无法满足稳定性要求,需对其进行稳频。激光器的稳频方法众多,但每种方法都有其缺点及不适用场所。饱和吸收法[4]抗干扰能力差,存在频率调制且体积大、应用范围小的问题,在激光回馈、偏振跳变等系统中需对光强调制,无法通过塞曼效应选取参考点进行等光强法[5]稳频。另有一种通过微型冷却风扇实现激光器频率的稳定[6]的方法,但风扇工作时的振动、噪声、风扇旋转等因素会引入热污染源,影响稳频精度。水冷散热稳频法[7]的循环水降温系统体积庞大,整个激光器稳频系统对密封性要求极高,设计复杂,并且输出的合光会引入周期非线性误差。

    上述常见的稳频方案无一适用基于激光回馈测量系统,比如与波片[8]相关的系统, 故采用被动稳频技术设计集散热与固定一体化的激光器基座。基于温度反馈,通过热电制冷器(thermo electrc cooler,TEC)对激光器管体降温,实时控制谐振腔温度,稳定激光器谐振腔长,使He-Ne激光器频率稳定在增益中心附近,达到稳频目的。本系统中采用的方法无需复杂的结构,对密封性要求低, 仅采用激光器管体温度是否稳定作为稳频指标,且系统不会因气体气压下降、等离子体温度变化影响频率稳定性。此稳频方式更简单,价格也更低廉。另外,本文中还对其稳定性进行了系列分析,研究对象均为全内腔He-Ne双频激光器。

1.   原理及系统设计
  • 由激光器谐振腔的驻波[9-10]条件可知, 激光频率和腔长关系为:

    式中,q为激光纵模的阶次,c为激光在真空中的传播速度,n为激光介质的折射率,L为激光器腔长,ν为激光频率。对(1)式进行微分并整理得到:

    式中,Δν为频率变化量,Δn为激光折射率变化量,ΔL为激光器谐振腔长变化量。由公式可知,腔长和增益介质的折射率受到外界环境影响会引起激光器的频率变化[11],腔长变化半个波长时,激光频率“漂”过一个纵模间隔[12],导致激光器的频率“漂移”。同时激光器温度的不稳定性限制了激光长期工作[13]。全内腔结构的激光器增益介质的折射率基本不会改变,而腔长的变化主要受到环境温度的影响。系统通过TEC对温度堆积的激光器进行降温以调节激光器谐振腔长[14]改变输出光功率值来稳频,保持激光器温度恒定。

    本文中所用激光器的基本参数为:激光器实际腔长L=135mm,膨胀系数α=5×10-6,激光波长λ=632.99nm。为使腔长保持在半个波长的波动范围内,要求环境的温度变化量ΔT为:

    本文作者的目标是将频率稳定性控制在10-6,由公式推算出所需要的频率变化量Δν=4.74×108,可得到谐振腔温度波动范围ΔT=0.200℃,即可满足频率稳定性要求。

  • 图 1为设计的散热效果更好的外壳。

    Figure 1.  Frequency stabilization system laser red copper housing

    图 1中的外壳改变以往用发黑处理的铝桶装配激光管的方法,采用导热系数高、价格低廉的紫铜材质制作散热外壳。外壳表面均匀分布1mm厚的长方体散热片,以增大表面的散热面积。表面布置4个安装TEC的凹槽,并用压盖固定。槽内和TEC上下表面均匀涂抹导热硅胶,以减小热阻。

    图 2为搭建的实验系统图。

    Figure 2.  Structure diagram of He-Ne laser frequency stabilization system and the measurement setup

    系统结构图由稳频温控系统和测量系统两部分组成。虚线部分为温控结构,由两部分组成。第一部分由温度传感器(PT100)、温度变送器(temperature transmitter,T)、A/D数模转换(analog/digital, AD)、数据采集卡(NI DAQ, ND)以及计算机(personal computer,PC)组成。PT100固定在激光器表面,在靠近阴极棒、激光器中部、靠近阳极的3个位置分别对称放置4个PT100,其电阻信息通过T转化成具有温度信息的模拟电压信号,电压信号由ND进行数模转换,通过比例-积分-微分(proportional-integral-derivative,PID)算法处理,由软件记录12个位置的温度数据。第二部分由负温度系数热敏电阻、温度控制模块(temperature control module, TC)、功率驱动模块(power drive module, PDM)组成。温度控制采用TES1-031041515型TEC对激光器控温,4个TEC最大制冷量可达59.2W。温控模块根据参考电阻间接算出负温度系数传感器温度,最后通过PID算法调节输出功率,并通过PDM改变TEC的制冷量保持激光器输出频率稳定和单纵模输出[15]。系统测量部分由图 2中虚线部分之外构成,即由分束镜(beam splitter, BS)、渥拉斯顿棱镜(Wollaston lens prism, WLP)、光电池(photodetector, PD)、个人计算机(personal computer,PC)、衰减片(attenuator, AP)以及波长计(wave-meter, WM)组成。选取阴极棒处的输出光作为测量光束,输出光由BS分成两束光,分别测量系统光功率稳定性和频率稳定性。测量功率的激光束经过WLP使其偏振态分离,功率信号由PD接收,经过求差放大处理后由软件记录数据。另一路在BS和WM中间放置AP,由软件记录波长信号。

2.   实验
  • 本文中实验的环境温度均为25.2℃。阴极棒朝上时,以阴极棒为起点,顺时针90°标记位置,分别记作上右下左,激光器前、中、后3个位置以此类推共定义12处位置。图 3为激光器从室温开始自然升温的12个位置处温度曲线。

    Figure 3.  Temperature curves of the laser tube at 12 PT100

    激光器自然温度为25℃,测试时长165min,每段部位的温度变化量约0.02℃,每侧上下左右4处温度曲线近乎重合。温度整体呈现缓慢上升直至稳定的趋势。当点亮激光器77min后中间位置的4处温度稳定在50.66℃,达到热平衡状态。其中中间右侧位置升温速度最快,而阴极棒和阳极处的8处位置的温度在77min后依然继续上升,阴极棒处的温度最高,165min升至超过52℃,阳极处温度最低,165min升至48.8℃,故选择激光器中间右侧位置作为判断激光器温度稳定点。

    图 4为加上稳频系统后激光器温度曲线。设定稳频系统调节温度为45.8℃,温差为26℃,测试时长约240min。激光器在58min时达到设定温度,当温度超过设定的调节温度后温控器不会立即驱动TEC工作,激光器升温0.2℃左右, TEC处于制冷模式; 6min后TEC将激光器温度制冷至调节温度。温度整体呈现先上升后下降最终稳定的趋势。稳频后激光器温度波动0.017℃,结果符合理论分析对温漂的要求。

    Figure 4.  Temperature diagram of the resonant cavity of a TEC stabilized laser driven by a thermostat

  • 激光功率稳定性能的优劣将直接影响激光器的使用性能,保证输出功率的稳定具有重要意义[16],同时功率稳定性也是评价激光器好坏的标准。对系统进行6次功率重复性测试,每组功率测试时长为4h。选取一组数据作如图 5所示的分析。

    Figure 5.  Power curve of He-Ne laser after adding frequency stabilization system

    图 5可知,0min~82min,激光器处于预热阶段,不断升温,腔长增加[17],腔长调谐剧烈,功率剧烈变化,幅值波动大,功率出现子腔效应。随着腔长调谐地进行,功率波动越来越小。82min激光器温度升至稳频温度设定值,功率随着激光器温度的稳定而逐渐稳定在2490mV左右,热稳频后功率零漂小于35mV。表 1中为光功率进行6次重复性实验数据。

    experiment times range/mV
    1 148
    2 109
    3 145
    4 107
    5 148
    6 122
    average 130

    Table 1.  Analysis of He-Ne laser output optical power after thermal balance

    对6次稳频数据分析可知,功率值波动量稳定在130mV左右,最大漂移量低于150mV。在测量过程中,系统会受到外界自然光、噪声等不可抗因素的影响导致功率会有一定的漂移,总体上稳频后功率漂移量低于3.20%,说明该系统的质量良好。

  • 激光器频率稳定性对测量领域起着重要作用[18]。根据波长和频率间的等量关系,激光器频率稳定性情况可以通过激光器波长反映出来。表 2中是考虑到环境温度[19]对稳频系统的影响,以环境温度为基准,对不同稳频温度与环境温度差的分析。

    experiment times temperature difference/℃ range/nm frequency stability
    1 25.2 3.83×10-4 6.05×10-7
    2 25.6 1.20×10-4 1.90×10-7
    3 26.0 4.23×10-4 6.68×10-7
    4 26.4 4.65×10-4 7.35×10-7
    5 26.8 5.54×10-4 8.75×10-7
    6 27.2 6.88×10-4 9.29×10-7
    7 27.6 3.10×10-4 4.90×10-7
    8 28.0 3.07×10-4 4.85×10-7

    Table 2.  Comparison of frequency stability of laser frequency stabilization under 8 times different temperature differences

    实验中比较不同温差对系统稳定性的影响,以0.4℃为梯度,25.2℃作为温度差的起点,共8组实验。可以发现,稳频系统可接受的温差最大范围约3.0℃,超过3.0℃面临着稳频失效的风险。当设定温差为25.6℃时,稳频效果最优,频率稳定性小于2.00×10-7;其余温差下的稳定性均大于4.00×10-7,稳频效果明显低于温差25.6℃下的结果。故将激光器的稳频温度设定在温差25.6℃的条件下,并在此条件下进行频率稳定性重复性测试。选取一组数据作如图 6所示的分析。重复性结果由表 3中给出。

    Figure 6.  Wavelength of the laser after frequency stabilization with a temperature difference of 25.6℃

    experiment times range/nm frequency stability the maximum amount of wavelength drift
    1 1.53×10-4 2.42×10-7 2.59×10-6
    2 1.03×10-4 1.61×10-7 3.40×10-6
    3 2.72×10-4 4.30×10-7 3.10×10-6
    4 1.92×10-4 3.03×10-7 2.65×10-6
    5 2.56×10-4 4.04×10-7 3.76×10-6
    6 3.40×10-4 5.37×10-7 3.08×10-6
    average 2.19×10-4 3.46×10-7 3.10×10-6

    Table 3.  Frequency stability repeatability test under a temperature difference of 25.6℃

    图 6可知,经稳频系统稳频后波长稳定,与均值偏离程度低,基本在632.99202nm~632.99211nm之间波动,漂移量为0.0001nm,波长漂移是由于激光器谐振腔长在微弱的变化,导致输出波长微弱变化。从整体曲线可知,波长基本呈现一条直线,无大范围波动。

    由6组温差25.6℃条件下频率稳定性重复性测试可知,稳频后激光器频率稳定性均低于3.5×10-7,最优可达到1.61×10-7。相较于利用激光回馈双折射测量系统测量诸如具有双折射性质的偏振器件,频率稳定度仅在10-6[20],系统稳频效果明显。每组数据波长最大漂移量均达10-6, 且重复性实验说明该系统的长期稳定性有很好的保障,系统频率稳定复现性良好。

3.   结论
  • 本文中通过基于温度控制激光器管体温度以稳定谐振腔长的方法,结合紫铜散热外壳和TEC温控模块共同控制,解决了激光回馈测量时因不断移动的回馈镜导致输出功率不稳定的问题, 实现了He-Ne激光器的功率和频率稳定。该稳频系统性能稳定,稳频后激光器保持单纵模状态,在稳定性上表现出优秀的性能,单次频率稳定性最优达1.61×10-7, 系统长期工作时,稳定性达10-7,符合应用标准。该系统为He-Ne激光器在激光回馈测量中获得更稳定的测量精度起到了关键作用。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return