Advanced Search
MIAO Xin, WANG Qi, DENG Yong, ZHANG Shulian. Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback[J]. LASER TECHNOLOGY, 2022, 46(6): 755-759. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.007
Citation: MIAO Xin, WANG Qi, DENG Yong, ZHANG Shulian. Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback[J]. LASER TECHNOLOGY, 2022, 46(6): 755-759. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.007

Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback

More Information
  • Received Date: July 04, 2021
  • Revised Date: August 31, 2021
  • Published Date: November 24, 2022
  • In order to improve the performance of the He-Ne laser in the laser feedback measurement system, and solve the technical problem that the frequency cannot be stabilized by traditional methods when the laser feedback mirror is constantly moving, a closed-loop passive frequency stabilization system method based on temperature feedback was adopted to control the temperature of the laser tube, and the theoretical analysis and experimental verification was conducted. The stability of the system under different stabilization temperature and ambient temperature difference was studied. The experimental results show that the best temperature difference of the system is 25.6℃. After frequency stabilization under this temperature difference, the He-Ne laser's wavelength fluctuation range is 10-4, that is, the frequency stability reaches 1.61×10-7, and power drift is less that 3.20%. The system can adjust the frequency stabilization temperature point according to the change of the ambient temperature, and the frequency stabilization structure is simple, meet the requirements of laser feedback for general application system stability.
  • [1]
    ZORKIN V S, CHULYAEVA E G, GOMOZKOVA E Y. Effect of magnetic fields on the dual-frequency active element of a He-Ne laser[J]. Journal of Optical Technology, 2020, 87(6): 338-341. DOI: 10.1364/JOT.87.000338
    [2]
    KOK Y, IRELAND M J, ROBERTSON J G, et al. Low-cost scheme for high-precision dual-wavelength laser metrology[J]. Applied Optics, 2013, 52(12): 2808-2814. DOI: 10.1364/AO.52.002808
    [3]
    WANG X B, SONG L K, ZHU H F. Measurement of wide-band phase retardation variation of wave-plates by means of continuous polarization interference method[J]. Laser Technology, 2012, 36(2): 258-261(in Chinese). DOI: 10.3969/j.issn.1001-3806.2012.02.029
    [4]
    ZHONG L, HUANG W. Review of frequency stabilization of laser[J]. Machine Design & Research, 2006, 33(9): 25-27(in Chinese).
    [5]
    LI L D. Research on the system of Zeeman stabilized He-Ne laser made of zerdour[D]. Changsha: Graduate School of National University of Defense Technology, 2010: 8-9(in Chinese).
    [6]
    QIAN J, LIU Zh Y, SHI Ch Y, et al. Frequency stabilization of internal-mirror He-Ne lasers by air cooling[J]. Applied Optics, 2012, 51(25): 6084-6088. DOI: 10.1364/AO.51.006084
    [7]
    FENG J. Research on water-cooling technology for frequency offset locking frequency stabilized laser[D]. Harbin: Harbin Institute of Technology, 2015: 6-7(in Chinese).
    [8]
    YAN M, GAO Zh Sh. The simple method research for measuring the phase retardation of wave-plates [J]. Laser Technology, 2005, 29(3): 233-236(in Chinese). DOI: 10.3969/j.issn.1001-3806.2005.03.022
    [9]
    LIANG J, LONG X W. Stability analysis of beat frequency in double-longitudinal-mode He-Ne laser[J]. Acta Optica Sinica, 2009, 29(5): 1301-1304 (in Chinese). DOI: 10.3788/AOS20092905.1301
    [10]
    REN L B, DING Y Ch, ZHOU L F, et al. Mid-frequency difference He-Ne ZB laser with elastic force-exerting and its frequency stabilization[J]. Infrared and Laser Engineering, 2008, 37(5): 814-817(in Chinese). DOI: 10.3969/j.issn.1007-2276.2008.05.015
    [11]
    ZONG X B, ZHU J, LI Y, et al. Phase retardation measurement of wave-plate based on laser frequency splitting technology[J]. Laser Technology, 2003, 27(4): 293-306(in Chinese).
    [12]
    ZHANG Sh L. Principle of orthogonal polarization[M]. Beijing: Tsinghua University Press, 2005: 166-167(in Chinese).
    [13]
    EL-DIASTY F, SOBEE M A, HUSSIEN H, et al. A heterodyne laser system to study frequency stabilized Zeeman 633nm He-Ne lasers deficient in temperature steadiness[J]. MAPAN, 2011, 26(4): 295-302. DOI: 10.1007/s12647-011-0027-0
    [14]
    TOSHIHIKO Y. Frequency stabilization of internal-mirror He-Ne(λ=633nm)lasers using the polarization properties[J]. Japanese Journal of Applied Physics, 2014, 19(11): 2181-2185.
    [15]
    XU L, ZHANG Sh L, TAN Y D, et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feed-back interferometry[J]. Review of Scientific Instruments, 2014, 85(8): 1693-1697.
    [16]
    CHEN X J, TANG X H, PENG H. Research of power stability for 3kW RF slab CO2 laser[J]. Laser Technology, 2017, 41(1): 91-93(in Chinese).
    [17]
    WANG Q, QIAN Y M, ZHANG Sh L. Thermal drift of frequency difference of frequency splitting laser with force-exerting[J]. Infrared and Laser Engineering, 2021, 50(2): 20200392 (in Chinese).
    [18]
    ZHOU H Q, XIA G Q, DENG T, et al. Influence of external cavity length variation on the lasing wavelength of the fiber grating external cavity semiconductor laser[J]. Laser Technology, 2005, 29(5): 476-490(in Chinese).
    [19]
    DIAO X F, TAN J B, HU P P, et al. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility[J]. Journal of Applied Optics, 2013, 52(3): 456-460.
    [20]
    YANG J H. Research on frequency stabilized technology of He-Ne laser with thermoelectric cooler[D]. Harbin: Harbin Institute of Technology, 2007: Ⅰ(in Chinese).
  • Related Articles

    [1]SUN Huajie, SHI Shihong, SHI Tuo, FU Geyan, CHEN Lei. Research of close-loop control of molten pool temperature during laser cladding process based on color CCD[J]. LASER TECHNOLOGY, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004
    [2]SHI Huan, ZHU Hong, XIAO Rong, WU Ju, ZHANG Qiuxia, QIAN Rongxin. Research on the technique of vibration frequency remote detection based on speckle pattern[J]. LASER TECHNOLOGY, 2016, 40(6): 801-805. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.006
    [3]ZHU Yuhan, HE Fengtao, PENG Xiaolong. Research of characteristics of laser speckle of plastic optical fiber[J]. LASER TECHNOLOGY, 2016, 40(1): 122-125. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.027
    [4]WANG Xiaolin, HE Fengtao, JIA Qiongyao, LIU Jia. Laser speckle control based on optical fiber vibration[J]. LASER TECHNOLOGY, 2014, 38(2): 177-180. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.007
    [5]ZHONG Xian-qong, XIANG An-ping. Perturbation frequency related modulation instability in case of high-order effects[J]. LASER TECHNOLOGY, 2009, 33(5): 545-547. DOI: 10.3969/j.issn.1001-3806.2009.05.019
    [6]YANG Jia-gui. Temperature stability design for a laser diode module[J]. LASER TECHNOLOGY, 2007, 31(4): 445-448.
    [7]ZHANG Xiao-hong, ZHANG Xu-dong, CHEN Wu-zhu, LEI Hua-dong. Prevention and mechanical analysis of porosity formation in pulsed CO2 laser welding of 30CrMnSiA[J]. LASER TECHNOLOGY, 2007, 31(4): 419-422.
    [8]ZHANG De-ling, CAO Feng-guang, HAN Yan-sheng, WANG You-qing. Study on the relationship between the power and the frequency of CO2 laser excited by RF[J]. LASER TECHNOLOGY, 2005, 29(2): 199-200.
    [9]Cheng Xiangyang, Wang Qi, Tian Zhaoshuo, Lu Wei. CW and pulse CO2 laser frequency stability measurement experiment[J]. LASER TECHNOLOGY, 2003, 27(5): 484-485,489.
    [10]Man Wenqing, Yang Shiqi, Zhong Xubin, Sun Fandian. Frequency of LD locked to the atomic spectrum line[J]. LASER TECHNOLOGY, 1998, 22(1): 8-10.
  • Cited by

    Periodical cited type(7)

    1. 刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 . 本站查看
    2. 王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 .
    3. 陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 .
    4. 蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 .
    5. 胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 .
    6. 高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 .
    7. 郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 . 本站查看

    Other cited types(6)

Catalog

    Article views (9) PDF downloads (9) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return