Citation: | MIAO Xin, WANG Qi, DENG Yong, ZHANG Shulian. Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback[J]. LASER TECHNOLOGY, 2022, 46(6): 755-759. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.007 |
[1] |
ZORKIN V S, CHULYAEVA E G, GOMOZKOVA E Y. Effect of magnetic fields on the dual-frequency active element of a He-Ne laser[J]. Journal of Optical Technology, 2020, 87(6): 338-341. DOI: 10.1364/JOT.87.000338
|
[2] |
KOK Y, IRELAND M J, ROBERTSON J G, et al. Low-cost scheme for high-precision dual-wavelength laser metrology[J]. Applied Optics, 2013, 52(12): 2808-2814. DOI: 10.1364/AO.52.002808
|
[3] |
WANG X B, SONG L K, ZHU H F. Measurement of wide-band phase retardation variation of wave-plates by means of continuous polarization interference method[J]. Laser Technology, 2012, 36(2): 258-261(in Chinese). DOI: 10.3969/j.issn.1001-3806.2012.02.029
|
[4] |
ZHONG L, HUANG W. Review of frequency stabilization of laser[J]. Machine Design & Research, 2006, 33(9): 25-27(in Chinese).
|
[5] |
LI L D. Research on the system of Zeeman stabilized He-Ne laser made of zerdour[D]. Changsha: Graduate School of National University of Defense Technology, 2010: 8-9(in Chinese).
|
[6] |
QIAN J, LIU Zh Y, SHI Ch Y, et al. Frequency stabilization of internal-mirror He-Ne lasers by air cooling[J]. Applied Optics, 2012, 51(25): 6084-6088. DOI: 10.1364/AO.51.006084
|
[7] |
FENG J. Research on water-cooling technology for frequency offset locking frequency stabilized laser[D]. Harbin: Harbin Institute of Technology, 2015: 6-7(in Chinese).
|
[8] |
YAN M, GAO Zh Sh. The simple method research for measuring the phase retardation of wave-plates [J]. Laser Technology, 2005, 29(3): 233-236(in Chinese). DOI: 10.3969/j.issn.1001-3806.2005.03.022
|
[9] |
LIANG J, LONG X W. Stability analysis of beat frequency in double-longitudinal-mode He-Ne laser[J]. Acta Optica Sinica, 2009, 29(5): 1301-1304 (in Chinese). DOI: 10.3788/AOS20092905.1301
|
[10] |
REN L B, DING Y Ch, ZHOU L F, et al. Mid-frequency difference He-Ne ZB laser with elastic force-exerting and its frequency stabilization[J]. Infrared and Laser Engineering, 2008, 37(5): 814-817(in Chinese). DOI: 10.3969/j.issn.1007-2276.2008.05.015
|
[11] |
ZONG X B, ZHU J, LI Y, et al. Phase retardation measurement of wave-plate based on laser frequency splitting technology[J]. Laser Technology, 2003, 27(4): 293-306(in Chinese).
|
[12] |
ZHANG Sh L. Principle of orthogonal polarization[M]. Beijing: Tsinghua University Press, 2005: 166-167(in Chinese).
|
[13] |
EL-DIASTY F, SOBEE M A, HUSSIEN H, et al. A heterodyne laser system to study frequency stabilized Zeeman 633nm He-Ne lasers deficient in temperature steadiness[J]. MAPAN, 2011, 26(4): 295-302. DOI: 10.1007/s12647-011-0027-0
|
[14] |
TOSHIHIKO Y. Frequency stabilization of internal-mirror He-Ne(λ=633nm)lasers using the polarization properties[J]. Japanese Journal of Applied Physics, 2014, 19(11): 2181-2185.
|
[15] |
XU L, ZHANG Sh L, TAN Y D, et al. Simultaneous measurement of refractive-index and thickness for optical materials by laser feed-back interferometry[J]. Review of Scientific Instruments, 2014, 85(8): 1693-1697.
|
[16] |
CHEN X J, TANG X H, PENG H. Research of power stability for 3kW RF slab CO2 laser[J]. Laser Technology, 2017, 41(1): 91-93(in Chinese).
|
[17] |
WANG Q, QIAN Y M, ZHANG Sh L. Thermal drift of frequency difference of frequency splitting laser with force-exerting[J]. Infrared and Laser Engineering, 2021, 50(2): 20200392 (in Chinese).
|
[18] |
ZHOU H Q, XIA G Q, DENG T, et al. Influence of external cavity length variation on the lasing wavelength of the fiber grating external cavity semiconductor laser[J]. Laser Technology, 2005, 29(5): 476-490(in Chinese).
|
[19] |
DIAO X F, TAN J B, HU P P, et al. Frequency stabilization of an internal mirror He-Ne laser with a high frequency reproducibility[J]. Journal of Applied Optics, 2013, 52(3): 456-460.
|
[20] |
YANG J H. Research on frequency stabilized technology of He-Ne laser with thermoelectric cooler[D]. Harbin: Harbin Institute of Technology, 2007: Ⅰ(in Chinese).
|
[1] | SUN Huajie, SHI Shihong, SHI Tuo, FU Geyan, CHEN Lei. Research of close-loop control of molten pool temperature during laser cladding process based on color CCD[J]. LASER TECHNOLOGY, 2018, 42(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.004 |
[2] | SHI Huan, ZHU Hong, XIAO Rong, WU Ju, ZHANG Qiuxia, QIAN Rongxin. Research on the technique of vibration frequency remote detection based on speckle pattern[J]. LASER TECHNOLOGY, 2016, 40(6): 801-805. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.006 |
[3] | ZHU Yuhan, HE Fengtao, PENG Xiaolong. Research of characteristics of laser speckle of plastic optical fiber[J]. LASER TECHNOLOGY, 2016, 40(1): 122-125. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.027 |
[4] | WANG Xiaolin, HE Fengtao, JIA Qiongyao, LIU Jia. Laser speckle control based on optical fiber vibration[J]. LASER TECHNOLOGY, 2014, 38(2): 177-180. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.007 |
[5] | ZHONG Xian-qong, XIANG An-ping. Perturbation frequency related modulation instability in case of high-order effects[J]. LASER TECHNOLOGY, 2009, 33(5): 545-547. DOI: 10.3969/j.issn.1001-3806.2009.05.019 |
[6] | YANG Jia-gui. Temperature stability design for a laser diode module[J]. LASER TECHNOLOGY, 2007, 31(4): 445-448. |
[7] | ZHANG Xiao-hong, ZHANG Xu-dong, CHEN Wu-zhu, LEI Hua-dong. Prevention and mechanical analysis of porosity formation in pulsed CO2 laser welding of 30CrMnSiA[J]. LASER TECHNOLOGY, 2007, 31(4): 419-422. |
[8] | ZHANG De-ling, CAO Feng-guang, HAN Yan-sheng, WANG You-qing. Study on the relationship between the power and the frequency of CO2 laser excited by RF[J]. LASER TECHNOLOGY, 2005, 29(2): 199-200. |
[9] | Cheng Xiangyang, Wang Qi, Tian Zhaoshuo, Lu Wei. CW and pulse CO2 laser frequency stability measurement experiment[J]. LASER TECHNOLOGY, 2003, 27(5): 484-485,489. |
[10] | Man Wenqing, Yang Shiqi, Zhong Xubin, Sun Fandian. Frequency of LD locked to the atomic spectrum line[J]. LASER TECHNOLOGY, 1998, 22(1): 8-10. |
1. |
刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 .
![]() | |
2. |
王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 .
![]() | |
3. |
陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 .
![]() | |
4. |
蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 .
![]() | |
5. |
胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 .
![]() | |
6. |
高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 .
![]() | |
7. |
郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 .
![]() |