Citation: | LIU Cuilian, TAO Yuxiang, LUO Xiaobo, LI Qingyan. Hyperspectral image classification based on hybrid convolutional neural network[J]. LASER TECHNOLOGY, 2022, 46(3): 355-361. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.009 |
[1] |
LI X, DING M L, PIŽURICA A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2615-2629. DOI: 10.1109/TGRS.2019.2952758
|
[2] |
GUO H, LIU J, XIAO Z, et al. Deep CNN-based hyperspectral image classification using discriminative multiple spatial-spectral feature fusion[J]. Remote Sensing Letters, 2020, 11(9): 827-836. DOI: 10.1080/2150704X.2020.1779374
|
[3] |
ZHAO W Zh, DU Sh H. Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4544-4554. DOI: 10.1109/TGRS.2016.2543748
|
[4] |
CHEN Y Sh, LIN Zh H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote, 2014, 7(6): 2094-2107. DOI: 10.1109/JSTARS.2014.2329330
|
[5] |
LIU P, CHOO K K R, WANG L, et al. SVM or deep learning? A comparative study on remote sensing image classification[J]. Soft Computing, 2017, 21(23): 7053-7065. DOI: 10.1007/s00500-016-2247-2
|
[6] |
ZHONG P, GONG Zh Q, LI Sh T, et al. Learning to diversify deep belief networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3516-3530. DOI: 10.1109/TGRS.2017.2675902
|
[7] |
ZHANG M M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2623-2634. DOI: 10.1109/TIP.2018.2809606
|
[8] |
XU Y H, ZHANG L P, DU B, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5893-5909.
|
[9] |
PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2145-2160. DOI: 10.1109/TGRS.2018.2871782
|
[10] |
ZHANG H K, LI Y, ZHANG Y Zh, et al. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network[J]. Remote Sensing Letters, 2017, 8(5): 438-447. DOI: 10.1080/2150704X.2017.1280200
|
[11] |
ZHONG Z L, LI J, LUO Zh M, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858. DOI: 10.1109/TGRS.2017.2755542
|
[12] |
LI J Y, LIANG B X, WANG Y H. A hybrid neural network for hyperspectral image classification[J]. Remote Sensing Letters, 2020, 11(1): 96-105. DOI: 10.1080/2150704X.2019.1686780
|
[13] |
LI W, WU G D, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844-853. DOI: 10.1109/TGRS.2016.2616355
|
[14] |
CHEN Y Sh, JIANG H L, LI Ch Y, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. DOI: 10.1109/TGRS.2016.2584107
|
[15] |
ROY S K, KRISHNA G, DUBEY S R, et al. HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. DOI: 10.1109/LGRS.2019.2918719
|
[16] |
GUAN Sh H, YANG G, LI H, et al. Hyperspectral image classification based on 3-D convolutional recurrent neural network[J]. Laser Technology, 2020, 44(4): 485-491(in Chinese).
|
[17] |
LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3-D convolutional neural network[J]. Remote Sensing, 2017, 9(1), 67. DOI: 10.3390/rs9010067
|
[18] |
MAKANTASIS K, KARANTZALOS K, DOULAMIS A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, USA: IEEE, 2015: 4959-4962.
|
[19] |
HANG R L, LI Zh, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939-4950. DOI: 10.1109/TGRS.2020.2969024
|
[20] |
HE M Y, LI B, CHEN H H. Multi-scale 3-D deep convolutional neural network for hyperspectral image classification[C]// 2017 IEEE International Conference on Image Processing (ICIP). New York, USA: IEEE, 2017: 3904-3908.
|
[21] |
MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. DOI: 10.1109/TGRS.2004.831865
|