Advanced Search
LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. LASER TECHNOLOGY, 2023, 47(4): 558-564. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.018
Citation: LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. LASER TECHNOLOGY, 2023, 47(4): 558-564. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.018

Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces

More Information
  • Received Date: June 28, 2022
  • Revised Date: July 27, 2022
  • Published Date: July 24, 2023
  • For the sake of solving the problem of surface wear and failure of the hot work die, based on ANSYS APDL software, a Gaussian heat source was applied to the hot work die by numerical simulation, and the H13 alloy powder was clad by the life and death element method. The process parameters were optimized and selected through the temperature field and stress field. The optimized process parameters were tested and verified, and the performance of the coating was tested. The results show that the optimal simulation parameters within the selected parameter range are the laser power of 1200 W and the scanning speed of 12 mm/s. The simulation results are close to the morphology and temperature distribution of the actual coating. The heat-affected zone in the numerical simulation and the combination of the results are highly consistent with the experimentally prepared results; the measured depth of the cladding layer is 0.13 mm, which corresponds to the simulated depth of 0 mm~0.2 mm, which further illustrates the reliability of the simulation results; the hardness and wear resistance of the cladding layer have been greatly improved, which are 3 times and 28 times more than that of the matrix, respectively. The results of this study provide a reference for strengthening and repairing hot work molds.
  • [1]
    李金华, 安学甲, 姚芳萍, 等. H13钢激光熔覆Ni基涂层热应力循环的仿真研究[J]. 中国激光, 2021, 48(10): 1002104. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202110005.htm

    LI J H, AN X J, YAO F P, et al. Simulation on thermal stress cycle in laser cladding of H13 steel Ni-based coating[J]. Chinese Journal of Lasers, 2021, 48(10): 1002104(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202110005.htm
    [2]
    李绍宏, 何文超, 张旭, 等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁, 2021, 56(3): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202103003.htm

    LI Sh H, HE W Ch, ZHANG X, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron & Steel, 2021, 56(3): 13-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202103003.htm
    [3]
    曹俊, 卢海飞, 鲁金忠, 等. WC对激光熔覆热作模具的组织和磨损性能的影响[J]. 中国激光, 2019, 46(7): 0702001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201907010.htm

    CAO J, LU H F, LU J Zh, et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working laser cladding[J]. Chinese Journal of Lasers, 2019, 46(7): 0702001 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201907010.htm
    [4]
    MENG C, CAO R, LI J, et al. Mechanical properties of TiC-reinforced H13 steel by bionic laser treatment[J]. Optics & Laser Technology, 2021, 136: 106815.
    [5]
    李洪波, 高强强, 李康英, 等. 表面激光熔覆H13/NiCr-Cr3C2复合粉末熔覆层性能研究[J]. 中国激光, 2021, 48(18): 1802017. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202118016.htm

    LI H B, GAO Q Q, LI K Y, et al. Properties of surface laser cladding H13/NiCr-Cr3C2 composite powder cladding[J]. Chinese Journal of Lasers, 2021, 48(18): 1802017(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202118016.htm
    [6]
    刘立君, 冯梦奎, 王晓陆, 等. 超声辅助H13模具钢表面激光熔覆强化层组织分析[J]. 焊接学报, 2021, 42(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202106012.htm

    LIU L J, FENG M K, WANG X L, et al. Microstructure analysis of laser cladding strength-ening layer on H13 die steel surface assisted by ultrasonic[J]. Transactions of the China Welding Institution, 2021, 42(6): 85-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202106012.htm
    [7]
    XUE K N, LU H F, LUO K Y, et al. Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J]. Surface and Coatings Technology, 2020, 402: 126488. DOI: 10.1016/j.surfcoat.2020.126488
    [8]
    陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006

    CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
    [9]
    LU J Z, CAO J, LU H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 2019, 369: 228-237.
    [10]
    胡晏明, 陈炜, 曹一枢, 等. 激光熔覆技术在模具磨损控制方面的研究进展[J]. 热加工工艺, 2021, 50(2): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202102003.htm

    HU Y M, CHEN W, CAO Y Sh, et al. Research progress of laser cladding technology in die wear control[J]. Hot Working Technology, 2021, 50(2): 10-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202102003.htm
    [11]
    黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019

    HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
    [12]
    YANG Z, HAO H, GAO Q, et al. Strengthening mechanism and high-temperature properties of H13+ WC/Y2O3 laser-cladding coatings[J]. Surface and Coatings Technology, 2021, 405: 126544.
    [13]
    LU J Z, XUE K N, LU H F, et al. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 296: 117202.
    [14]
    LIZZUL L, SORGATO M, BERTOLINI R, et al. On the influence of laser cladding parameters and number of deposited layers on asbuilt and machined AISI H13 tool steel multilayered claddings[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 361-370.
    [15]
    CHAI Q, WANG Z, FANG C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface and Coatings Technology, 2021, 422: 127494.
    [16]
    LIU Y, XU T, ZHANG D, et al. Numerical simulation and microstructure formation mechanism of Ni-based coating fabricated by laser on copper plate[J]. Optik, 2022, 254: 168645.
    [17]
    WANG Ch Y, ZHOU J Zh, ZHANG T, et al. Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J]. Optics & Laser Technology, 2022, 149: 107843.
    [18]
    GAO J, WU C, HAO Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287.
    [19]
    ZHANG Q, XU P, ZHA G, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079.
    [20]
    CUI Ch, WU M P, HE R, et al. Understanding Stellite-6 coating prepared by laser clad-ding: Convection and columnar-to-equiaxed transition[J]. Optics & Laser Technology, 2022, 149: 107885.
    [21]
    GAO W, ZHAO S, WANG Y, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 2016, 92: 83-90.
  • Related Articles

    [1]HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. LASER TECHNOLOGY, 2024, 48(4): 590-596. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.019
    [2]SHEN Zhifei, LIU Xiaodong, FEI Xilei, KANG Kai. Laser galvanometer processing algorithm based on Bezier curve optimization of point set[J]. LASER TECHNOLOGY, 2021, 45(5): 548-553. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.002
    [3]LIANG Weiwei, TAN Rui, GUO Hao, YIN Ruiguang, ZHAO Hongpeng, LI Bo. Study on laser warning probability curve in different background sunlight[J]. LASER TECHNOLOGY, 2016, 40(6): 830-833. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.012
    [4]XIN Lijun, WANG Zhiyong. High speed laser cutting of silicon steel on cold rolling production line[J]. LASER TECHNOLOGY, 2015, 39(2): 228-232. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.018
    [5]JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033
    [6]LIU Biao, WU Yun-feng, ZHAO Xin-cai. 全光纤位移干涉测速系统中小波基的选取研究[J]. LASER TECHNOLOGY, 2012, 36(2): 247-250. DOI: 10.3969/j.issn.1001-3806.2012.02.027
    [7]LUO Peng, WU Yun-feng, YUE Song, YUAN Ai-long, CHENG Zhi-qiang. Polygonal approximating algorithm of digital curves for bitmap laser marking[J]. LASER TECHNOLOGY, 2011, 35(3): 372-375,397. DOI: 10.3969/j.issn.1001-3806.2011.03.022
    [8]JIANG Xing-fang, PAN Guo-wei1, TAO Chun-kan. Cloud elimination method in remote sensing image based on spline curve[J]. LASER TECHNOLOGY, 2007, 31(6): 581-583.
    [9]GUI Jin-bin, MA Kun, LOU Yu-li, LI Jun-chang. Study of beam parameters expression in laser heat treatment[J]. LASER TECHNOLOGY, 2004, 28(5): 543-546.
    [10]Li Junchang. A study on the thermal effect of the interference and diffraction fringes of laser beam in the process of laser heat treatment[J]. LASER TECHNOLOGY, 1994, 18(6): 329-334.
  • Cited by

    Periodical cited type(3)

    1. 张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 .
    2. 杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 .
    3. 曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 .

    Other cited types(0)

Catalog

    Article views (485) PDF downloads (6) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return