Citation: | LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. LASER TECHNOLOGY, 2023, 47(4): 558-564. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.018 |
[1] |
李金华, 安学甲, 姚芳萍, 等. H13钢激光熔覆Ni基涂层热应力循环的仿真研究[J]. 中国激光, 2021, 48(10): 1002104. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202110005.htm
LI J H, AN X J, YAO F P, et al. Simulation on thermal stress cycle in laser cladding of H13 steel Ni-based coating[J]. Chinese Journal of Lasers, 2021, 48(10): 1002104(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202110005.htm
|
[2] |
李绍宏, 何文超, 张旭, 等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁, 2021, 56(3): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202103003.htm
LI Sh H, HE W Ch, ZHANG X, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron & Steel, 2021, 56(3): 13-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GANT202103003.htm
|
[3] |
曹俊, 卢海飞, 鲁金忠, 等. WC对激光熔覆热作模具的组织和磨损性能的影响[J]. 中国激光, 2019, 46(7): 0702001. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201907010.htm
CAO J, LU H F, LU J Zh, et al. Effects of tungsten carbide particles on microstructure and wear resistance of hot-working laser cladding[J]. Chinese Journal of Lasers, 2019, 46(7): 0702001 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201907010.htm
|
[4] |
MENG C, CAO R, LI J, et al. Mechanical properties of TiC-reinforced H13 steel by bionic laser treatment[J]. Optics & Laser Technology, 2021, 136: 106815.
|
[5] |
李洪波, 高强强, 李康英, 等. 表面激光熔覆H13/NiCr-Cr3C2复合粉末熔覆层性能研究[J]. 中国激光, 2021, 48(18): 1802017. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202118016.htm
LI H B, GAO Q Q, LI K Y, et al. Properties of surface laser cladding H13/NiCr-Cr3C2 composite powder cladding[J]. Chinese Journal of Lasers, 2021, 48(18): 1802017(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202118016.htm
|
[6] |
刘立君, 冯梦奎, 王晓陆, 等. 超声辅助H13模具钢表面激光熔覆强化层组织分析[J]. 焊接学报, 2021, 42(6): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202106012.htm
LIU L J, FENG M K, WANG X L, et al. Microstructure analysis of laser cladding strength-ening layer on H13 die steel surface assisted by ultrasonic[J]. Transactions of the China Welding Institution, 2021, 42(6): 85-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202106012.htm
|
[7] |
XUE K N, LU H F, LUO K Y, et al. Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J]. Surface and Coatings Technology, 2020, 402: 126488. DOI: 10.1016/j.surfcoat.2020.126488
|
[8] |
陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
|
[9] |
LU J Z, CAO J, LU H F, et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding[J]. Surface and Coatings Technology, 2019, 369: 228-237.
|
[10] |
胡晏明, 陈炜, 曹一枢, 等. 激光熔覆技术在模具磨损控制方面的研究进展[J]. 热加工工艺, 2021, 50(2): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202102003.htm
HU Y M, CHEN W, CAO Y Sh, et al. Research progress of laser cladding technology in die wear control[J]. Hot Working Technology, 2021, 50(2): 10-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202102003.htm
|
[11] |
黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
|
[12] |
YANG Z, HAO H, GAO Q, et al. Strengthening mechanism and high-temperature properties of H13+ WC/Y2O3 laser-cladding coatings[J]. Surface and Coatings Technology, 2021, 405: 126544.
|
[13] |
LU J Z, XUE K N, LU H F, et al. Laser shock wave-induced wear property improvement and formation mechanism of laser cladding Ni25 coating on H13 tool steel[J]. Journal of Materials Processing Technology, 2021, 296: 117202.
|
[14] |
LIZZUL L, SORGATO M, BERTOLINI R, et al. On the influence of laser cladding parameters and number of deposited layers on asbuilt and machined AISI H13 tool steel multilayered claddings[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 361-370.
|
[15] |
CHAI Q, WANG Z, FANG C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface and Coatings Technology, 2021, 422: 127494.
|
[16] |
LIU Y, XU T, ZHANG D, et al. Numerical simulation and microstructure formation mechanism of Ni-based coating fabricated by laser on copper plate[J]. Optik, 2022, 254: 168645.
|
[17] |
WANG Ch Y, ZHOU J Zh, ZHANG T, et al. Numerical simulation and solidification characteristics for laser cladding of Inconel 718[J]. Optics & Laser Technology, 2022, 149: 107843.
|
[18] |
GAO J, WU C, HAO Y, et al. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding[J]. Optics & Laser Technology, 2020, 129: 106287.
|
[19] |
ZHANG Q, XU P, ZHA G, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242: 167079.
|
[20] |
CUI Ch, WU M P, HE R, et al. Understanding Stellite-6 coating prepared by laser clad-ding: Convection and columnar-to-equiaxed transition[J]. Optics & Laser Technology, 2022, 149: 107885.
|
[21] |
GAO W, ZHAO S, WANG Y, et al. Numerical simulation of thermal field and Fe-based coating doped Ti[J]. International Journal of Heat and Mass Transfer, 2016, 92: 83-90.
|
[1] | HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. LASER TECHNOLOGY, 2024, 48(4): 590-596. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.019 |
[2] | SHEN Zhifei, LIU Xiaodong, FEI Xilei, KANG Kai. Laser galvanometer processing algorithm based on Bezier curve optimization of point set[J]. LASER TECHNOLOGY, 2021, 45(5): 548-553. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.002 |
[3] | LIANG Weiwei, TAN Rui, GUO Hao, YIN Ruiguang, ZHAO Hongpeng, LI Bo. Study on laser warning probability curve in different background sunlight[J]. LASER TECHNOLOGY, 2016, 40(6): 830-833. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.012 |
[4] | XIN Lijun, WANG Zhiyong. High speed laser cutting of silicon steel on cold rolling production line[J]. LASER TECHNOLOGY, 2015, 39(2): 228-232. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.018 |
[5] | JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033 |
[6] | LIU Biao, WU Yun-feng, ZHAO Xin-cai. 全光纤位移干涉测速系统中小波基的选取研究[J]. LASER TECHNOLOGY, 2012, 36(2): 247-250. DOI: 10.3969/j.issn.1001-3806.2012.02.027 |
[7] | LUO Peng, WU Yun-feng, YUE Song, YUAN Ai-long, CHENG Zhi-qiang. Polygonal approximating algorithm of digital curves for bitmap laser marking[J]. LASER TECHNOLOGY, 2011, 35(3): 372-375,397. DOI: 10.3969/j.issn.1001-3806.2011.03.022 |
[8] | JIANG Xing-fang, PAN Guo-wei1, TAO Chun-kan. Cloud elimination method in remote sensing image based on spline curve[J]. LASER TECHNOLOGY, 2007, 31(6): 581-583. |
[9] | GUI Jin-bin, MA Kun, LOU Yu-li, LI Jun-chang. Study of beam parameters expression in laser heat treatment[J]. LASER TECHNOLOGY, 2004, 28(5): 543-546. |
[10] | Li Junchang. A study on the thermal effect of the interference and diffraction fringes of laser beam in the process of laser heat treatment[J]. LASER TECHNOLOGY, 1994, 18(6): 329-334. |
1. |
张科星. 基于深度学习理论的激光图像融合研究. 激光杂志. 2021(04): 121-125 .
![]() | |
2. |
杨敏,唐思源,白金牛. 基于光流场模型的医学图像弹性配准. 激光杂志. 2020(07): 104-108 .
![]() | |
3. |
曾志宏,张凌,余少勇. 基于区域特征的长波红外偏振图像融合. 激光杂志. 2020(12): 65-69 .
![]() |