Citation: | JIA Na, YU Benjun, ZHANG Chunpu, WANG Chunxin, LIU Jiuqing. Optimization of single-pass forming parameters for selective laser melting WC-12Co[J]. LASER TECHNOLOGY, 2025, 49(1): 113-120. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.018 |
In order to realize the integral forming of tungsten carbide WC-12Co metal powder products, the selective laser melting (SLM) technology was used for the theoretical analysis and experimental verification of the single-pass melting pool forming of WC-12Co alloy powder. The results show that: Different combinations of laser scanning rate and power affect the continuity and morphology of the single pass molten pool. When the laser power is 340 W, the scanning rate is 600 mm/s, the scanning interval is 60 μm/pass, and the powder thickness is 40 μm/layer, the single pass molten pool morphology reaches the best state, presenting a stable and continuous "fishscale" morphology. The single layer cracks of the forming object are the least. In the process of single pass forming, W element aggregation occurs in the section of single pass melting pool, which is an important reason for the anisotropy of formed WC-Co block. This research result plays a decisive role in the forming of cemented carbide WC-12Co metal powder products.
[1] |
袁巨龙, 毛美姣, 李敏, 等. 硬质合金刀具材料化学机械抛光机理研究[J]. 表面技术, 2019, 48(2): 260-267.
YUAN J L, MAO M J, LI M, et al. Research on chemical-mechanical polishing mechanism of cemented carbide cutting tool materials[J]. Surface Technology, 2019, 48(2): 260-267(in Chinese).
|
[2] |
YANG Y, ZHANG C, WANG D, et al. Additive manufacturing of WC-Co hardmetals: A review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5): 1653-1673.
|
[3] |
POSTEK E, SADOWSKI T. Thermomechanical effects during impact testing of WC/Co composite material[J]. Composite Structures, 2020, 241: 112054. DOI: 10.1016/j.compstruct.2020.112054
|
[4] |
宋剑锋, 樊又铭, 焦朝旭, 等. 316L不锈钢粉末激光选区熔化成形仿真及单层多熔道形貌重构[J]. 中国激光, 2023, 50(24): 2402307.
SONG J F, FAN Y M, JIAO Ch X, et al. Simulation of laser selective zone melting and forming of 316L stainless steel powder and reconstruction of single-layer multi-melting channel morphology[J]. Chinese Journal of Lasers, 2023, 50(24): 2402307(in Chinese).
|
[5] |
SUN Z, MA Y, PONGE D, et al. Thermodynamics-guided alloy and process design for additive manufacturing[J]. Nature Communications, 2022, 13(1): 4361. DOI: 10.1038/s41467-022-31969-y
|
[6] |
王琮玮, 杨光, 王琮瑜, 等. 选区激光熔化成型镁合金构件关键技术综述[J]. 河北科技大学学报, 2022, 43(1): 50-58.
WANG C W, YANG G, WANG C Y, et al. A review of key techno-logies for selective laser melting and molding of magnesium alloy components[J]. Journal of Hebei University of Science and Technology, 2022, 43(1): 50-58(in Chinese).
|
[7] |
CHEN H, WEI Q S, WEN Sh F, et al. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 146-159. DOI: 10.1016/j.ijmachtools.2017.08.004
|
[8] |
梁平华, 唐倩, 冯琪翔, 等. 激光选区熔化单道扫描与搭接数值模拟及实验[J]. 机械工程学报, 2020, 56(22): 56-67.
LIANG P H, TANG Q, FENG Q X, et al. Numerical simulation and test of single-pass scanning and lapping for laser selective melting[J]. Journal of Mechanical Engineering, 2020, 56(22): 56-67(in Ch-inese).
|
[9] |
任治好, 张正文, 马翔宇, 等. 球化效应下激光选区熔化中的激光辐照行为[J]. 中国激光, 2022, 49(14): 1402203.
REN Zh H, ZHANG Zh W, MA X Y, et al. Laser irradiation beha-vior in laser selective melting under spheroidization effect[J]. Chinese Journal of Lasers, 2022, 49(14): 1402203(in Chinese).
|
[10] |
LI Y, GU D D. Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and expe-rimental study[J]. Additive Manufacturing, 2014, 1/4: 99-109. DOI: 10.1016/j.addma.2014.09.001
|
[11] |
徐光晨. 基于SLM的纯铝/AM60层状复合材料的温度场模拟[J]. 芜湖职业技术学院学报, 2017, 19(4): 39-44.
XU G Ch. Temperature field simulation of pure aluminum/AM60 laminated composites based on SLM[J]. Journal of Wuhu Vocational and Technical College, 2017, 19(4): 39-44(in Chinese).
|
[12] |
李继康, 张振武, 杨源祺, 等. 激光选区熔化DD91镍基单晶高温合金的单道形貌、晶体取向和微观组织[J]. 中国激光, 2022, 49(14): 1402103.
LI J K, ZHANG Zh W, YANG Y Q, et al. Single-channel morpho-logy, crystal orientation and microstructure of DD91 nickel-based single-crystal high-temperature alloy by laser selective zone melting[J]. Chinese Journal of Lasers, 2022, 49(14): 1402103(in Chinese).
|
[13] |
王杉杉, 师文庆, 吴腾, 等. WC质量分数对激光熔覆Ni基涂层组织和性能的影响[J]. 激光技术, 2023, 47(4): 463-468. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.004
WANG Sh Sh, SHI W Q, WU T, et al. Effect of WC mass fraction on microstructure andproperties of laser cladding Ni-based coatings[J]. Laser Technology, 2023, 47(4): 463-468(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.04.004
|
[14] |
陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
CHEN Z H, SUN W L, HUANG Y, et al. Study on microstructure and properties of laser cladding coating for base superalloy[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
|
[15] |
李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术2023, 47(1): 52-58. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
LI L Ch, WEI X. Study on effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47 (1) : 52-58(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
|
[16] |
邵海龙, 林紫雄, 张政, 等. 基于熔道结构与线、体能量密度研究钛合金激光选区熔化工艺[J]. 激光与光电子学进展, 2022, 59(1): 0114007.
SHAO H L, LIN Z X, ZHANG Zh, et al. Study of laser selective zone melting process of titanium alloy based on melt channel structure and line and body energy density[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114007(in Chinese).
|
[17] |
潘爱琼, 张辉, 王泽敏. 选区激光熔化镍基单晶高温合金的熔池显微组织[J]. 激光与光电子学进展, 2017, 54(7): 071402.
PAN A Q, ZHANG H, WANG Z M. Melt pool microstructure of nickel-based single-crystal high-temperature alloy by selective laser melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071402(in Chinese).
|
[18] |
钱雪立, 彭子龙, 兰红波, 等. Ni60粉末选区激光熔化微金属结构成形工艺研究[J]. 热加工工艺, 2017, 46(20): 68-71.
QIAN X L, PENG Z L, LAN H B, et al. Research on the forming process of Ni60 powder selective laser melting micro-metallic structure[J]. Thermal Processing Technology, 2017, 46(20): 68-71(in Chinese).
|
[19] |
冯一琦, 谢国印, 张璧, 等. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12): 234-243.
FENG Y Q, XIE G Y, ZHANG B, et al. Influence of laser power and bottom surface state on selective laser melting spheroidization[J]. Journal of Aeronautics, 2019, 40(12): 234-243(in Chinese).
|
[20] |
宗学文, 张健, 刘文杰. 激光选区熔化成形Ti6Al4V、GH3536和316L不锈钢组织及性能研究[J]. 应用激光, 2021, 41(1): 35-43.
ZONG X W, ZHANG J, LIU W J. Study on the organization and properties of Ti6Al4V, GH3536 and 316L stainless steels by laser selective zone melting and forming[J]. Applied Laser, 2021, 41(1): 35-43(in Chinese).
|
[21] |
李宜泽. 激光选区熔化成形原位自生钛/钛铝合金工艺实验研究[D]. 南京: 南京航空航天大学, 2020: 43-57.
LI Y Z. Experimental study on the process of in-situ autogenous titanium/titanium-aluminum alloy forming by laser selective zone melting [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 43-57(in Chinese).
|