Advanced Search
ZHANG Tao, LI Qian, ZHENG Jiafeng, ZHANG Wenling, FAN Qi, ZHANG Jie. A study on low-level wind shear caused by microburst using lidar and other data[J]. LASER TECHNOLOGY, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007
Citation: ZHANG Tao, LI Qian, ZHENG Jiafeng, ZHANG Wenling, FAN Qi, ZHANG Jie. A study on low-level wind shear caused by microburst using lidar and other data[J]. LASER TECHNOLOGY, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

A study on low-level wind shear caused by microburst using lidar and other data

More Information
  • Received Date: February 05, 2020
  • Revised Date: March 31, 2020
  • Published Date: September 24, 2020
  • A strong low-level wind shear can cause a super low-level go around, which is a great threat to aircraft safety. In order to improve the ability of safeguard flight safety, the detailed structure and genesis mechanism of the wind shear event were studied using lidar, wind profile radar and other data of Xining Airport on 2018-04-26. The results indicate that microburst is the main cause of the low-level wind shear. The direct reason for the formation of low-level wind shear is the thunderstorm high divergent airflow and the ambient wind which is superposed in the same direction. The dry cold air subsided quickly from an altitude of 2.0km to the near ground and formed a thunderstorm high pressure, and then became an outflow that formed a divergent flow at a horizontal scale of about 3.0km, triggering low-level wind shear. This low-level wind shear lasted about 8min, of which poses the greatest threat to flight safety is at the initial generation of downburst. The time for updraft quickly turning to downdraft at 0.4km~2.0km height is about 4min ahead of the occurrence of low-level wind shear. The research is significant to use wind lidar to improve the ability of flight safety support.
  • [1]
    INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M].Ottawa, Canada:International Civil Aviation Organization, 2005:5-27.
    [2]
    CAO Sh Y, ZHANG J, SHI D P, et al. Analysis on the elevated thunderstorms in the past decade in Jiangsu[J]. Journal of the Meteorological Sciences, 2018, 38(5):681-691(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx201805013
    [3]
    FUJITA T T, CARACENA F. An analysis of three weather-related aircraft accidents[J]. Bulletin of the American Meteorological Society, 1977, 58(11):1164-1181. DOI: 10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2
    [4]
    FUJITA T T, BYERS R M. Spearhead echo and downbursts in the crash of an airliner[J]. Monthly Weather Review, 1977, 105:129-146. DOI: 10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2
    [5]
    JIN Ch J, ZHANG H, ZHU R B, et al. A study on low level wind shear risk estimation criterion[J]. Acta Aeronauticaet Astronautica Sinica, 1992, 13(10):481-486(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKXB199210003.htm
    [6]
    WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12):1324-1328(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201212002
    [7]
    UYEDA H, ZRNIC D S. Automatic detection of gust fronts[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3(1):36-50. DOI: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2
    [8]
    EVANS J E, DUCOT E R. The integrated terminal weather system(ITWS)[J]. Lincoln Laboratory Journal, 1994, 7(2):449-474. DOI: 10.3406/anami.1990.2270
    [9]
    CAMPBELL S D, OLSON S H. Recognizing low-altitude wind shear hazards from Doppler weather radar:An artificial intelligence approach[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(1):32-34.
    [10]
    WANG N, LIU L P, XU B X, et al. Recognizing low-altitude wind shear and convergence line with doppler radar[J]. Journal of Applied Meteorological Science, 2007, 18(3):314-320 (in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb200703007
    [11]
    YAN W H, HUANG X Y, LI Y Y, et al. Research on shear detection algorithm based on Doppler weather radar for low-elevation Doppler velocity[J]. Journal of Tropical Meteorology, 2019, 35(2):253-261(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201902010
    [12]
    WANG L, WEI M, YANG T. An advanced algorithm for recognizing wind shear using airborne Doppler weather radar[J]. Journal of Aero-space Engineering, 2015, 229(14):2547-2558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de0060e7d26439bfd7c9a0959cf1ab43
    [13]
    XIONG X L, CHEN N, LI Y D, et al. Type recognition of low-level wind shear based on convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(4):772-779(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201904012
    [14]
    ZHANG H W, WU S H, YIN J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4):468-476(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb201804015
    [15]
    ARNIJO L. A theory for the determination of wind and precipitation velocities with Doppler radars[J]. Journal of the Atmospheric Sciences, 1969, 26(3) :570-573. DOI: 10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
    [16]
    WENG N Q, XIAO L M, GONG Zh B, et al. The theory and experimental verification of 915M microwave radar[J]. Journal of Quantum Electronics, 2001, 18(1):92-96(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdzxb200101019
    [17]
    WU S, YIN J, LIU B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]// Lidar Remote Sensing for Environmental Monitoring ⅩⅣ. Beijing: International Society for Optics and Photonics, 2014: 92620H.
    [18]
    WU S, LIU B, LIU J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10):A762-A780. DOI: 10.1364/OE.24.00A762
    [19]
    FENG L T, ZHOU J, FAN Q, et al. three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5):0512001(in Chinese). DOI: 10.3788/gzxb20194805.0512001
    [20]
    LI C, ZHAO P E, PENG T, et al. Technical research of 3-D wind lidar[J]. Laser Technology, 2017, 41(5):703-707(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705017
    [21]
    FUJITA T T. The downburst (report of projects NIMROD and JAWS)[R]. Chicage, USA:University of Chicago, 1985:122.
  • Cited by

    Periodical cited type(18)

    1. 王鑫洋,郑佳锋,黄轩,陈杨瑞雪,任涛. 一次典型高原低空风切变的成因和发展演变特征研究. 成都信息工程大学学报. 2025(01): 72-78 .
    2. 孙启祯,叶家全. 我国西部地区机场风切变事件分布特性分析. 中国民航飞行学院学报. 2025(01): 10-14 .
    3. 白寒冰,郑佳锋,杜星,车玉章. 基于1.55μm激光雷达的雷暴风切变结构研究. 应用激光. 2024(01): 86-96 .
    4. 华志强,黄轩,赵启娜,田维东,孙永鑫. 西宁机场低空风切变特征统计及预警指标初探. 民航学报. 2024(03): 99-103+169 .
    5. 牛向华,黄轩,朱文会,郑佳锋,唐顺仙,任涛,程振. 1.55μm激光雷达高原机场下击暴流探测应用研究. 激光技术. 2024(03): 318-326 . 本站查看
    6. 杨巧兰,蒋晓威,夏冬,黄照亮,李智标,邓丽洁. 地形和建筑触发珠海机场低空风切变数值模拟. 中山大学学报(自然科学版)(中英文). 2024(04): 47-60 .
    7. 王楠,程海艳,尹才虎. 测风激光雷达对孤立雷暴引发湿下击暴流的结构分析. 激光技术. 2024(05): 643-650 . 本站查看
    8. 梁希豪,杨寅,冯亮,杜星,王清平. 基于测风激光雷达银川机场动量下传大风特征研究. 激光技术. 2023(03): 432-438 . 本站查看
    9. 徐足音,吴俊杰. 相干测风雷达的风切变识别及预警研究. 气象水文海洋仪器. 2023(02): 71-74 .
    10. 吴俊杰,徐足音,王耀辉,杨传军,陈明. 相干测风激光雷达探测效能评估研究. 激光技术. 2023(05): 716-722 . 本站查看
    11. 王楠,尹才虎,刘晓明,高晋徽. 乌鲁木齐机场一次冷锋型低空风切变过程的LiDAR分析. 激光技术. 2023(04): 565-571 . 本站查看
    12. 张兆阳,孙宏,王奇,孙启祯,赵新斌,王一. 基于AHP和QAR数据的风切变风险管控. 项目管理技术. 2023(09): 115-120 .
    13. 白寒冰,陈诚,林彤. 基于1.55μm激光雷达的晴空风切变结构研究. 激光与红外. 2023(10): 1497-1504 .
    14. 吴俊杰,王耀辉,徐足音,任佳莉,张博义. 基于多普勒激光雷达的机场边界层高度研究. 激光技术. 2023(06): 778-785 . 本站查看
    15. 黄轩,郑佳锋,张杰,马晓玲,田维东,华志强. 西宁机场一次低空风切变的结构和特征研究. 激光技术. 2022(02): 206-212 . 本站查看
    16. 张千千,史纬恒,伍波,万家硕,成家豪,龚靖,赵青虎. 基于小波变换模极大值的LiDAR风切变预警算法. 激光技术. 2022(05): 610-617 . 本站查看
    17. 李林,张治国,杜传耀,韦涛,于丽萍,范雪波. 多普勒测风激光雷达与L波段探空对比分析. 大气与环境光学学报. 2022(05): 494-505 .
    18. 王晋,田军委,刘雪松,张杰,张震. 湿微下击暴流对火炮外弹道精度影响分析. 弹箭与制导学报. 2022(06): 99-106 .

    Other cited types(1)

Catalog

    Article views (9) PDF downloads (6) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return