Citation: | ZHANG Tao, LI Qian, ZHENG Jiafeng, ZHANG Wenling, FAN Qi, ZHANG Jie. A study on low-level wind shear caused by microburst using lidar and other data[J]. LASER TECHNOLOGY, 2020, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007 |
[1] |
INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M].Ottawa, Canada:International Civil Aviation Organization, 2005:5-27.
|
[2] |
CAO Sh Y, ZHANG J, SHI D P, et al. Analysis on the elevated thunderstorms in the past decade in Jiangsu[J]. Journal of the Meteorological Sciences, 2018, 38(5):681-691(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx201805013
|
[3] |
FUJITA T T, CARACENA F. An analysis of three weather-related aircraft accidents[J]. Bulletin of the American Meteorological Society, 1977, 58(11):1164-1181. DOI: 10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2
|
[4] |
FUJITA T T, BYERS R M. Spearhead echo and downbursts in the crash of an airliner[J]. Monthly Weather Review, 1977, 105:129-146. DOI: 10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2
|
[5] |
JIN Ch J, ZHANG H, ZHU R B, et al. A study on low level wind shear risk estimation criterion[J]. Acta Aeronauticaet Astronautica Sinica, 1992, 13(10):481-486(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HKXB199210003.htm
|
[6] |
WANG Q M, GUO L L. Development of lidar in detection of low altitude wind shear[J]. Laser and Infrared, 2012, 42(12):1324-1328(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201212002
|
[7] |
UYEDA H, ZRNIC D S. Automatic detection of gust fronts[J]. Journal of Atmospheric and Oceanic Technology, 1986, 3(1):36-50. DOI: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2
|
[8] |
EVANS J E, DUCOT E R. The integrated terminal weather system(ITWS)[J]. Lincoln Laboratory Journal, 1994, 7(2):449-474. DOI: 10.3406/anami.1990.2270
|
[9] |
CAMPBELL S D, OLSON S H. Recognizing low-altitude wind shear hazards from Doppler weather radar:An artificial intelligence approach[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4(1):32-34.
|
[10] |
WANG N, LIU L P, XU B X, et al. Recognizing low-altitude wind shear and convergence line with doppler radar[J]. Journal of Applied Meteorological Science, 2007, 18(3):314-320 (in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb200703007
|
[11] |
YAN W H, HUANG X Y, LI Y Y, et al. Research on shear detection algorithm based on Doppler weather radar for low-elevation Doppler velocity[J]. Journal of Tropical Meteorology, 2019, 35(2):253-261(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201902010
|
[12] |
WANG L, WEI M, YANG T. An advanced algorithm for recognizing wind shear using airborne Doppler weather radar[J]. Journal of Aero-space Engineering, 2015, 229(14):2547-2558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de0060e7d26439bfd7c9a0959cf1ab43
|
[13] |
XIONG X L, CHEN N, LI Y D, et al. Type recognition of low-level wind shear based on convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41(4):772-779(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201904012
|
[14] |
ZHANG H W, WU S H, YIN J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4):468-476(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb201804015
|
[15] |
ARNIJO L. A theory for the determination of wind and precipitation velocities with Doppler radars[J]. Journal of the Atmospheric Sciences, 1969, 26(3) :570-573. DOI: 10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
|
[16] |
WENG N Q, XIAO L M, GONG Zh B, et al. The theory and experimental verification of 915M microwave radar[J]. Journal of Quantum Electronics, 2001, 18(1):92-96(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdzxb200101019
|
[17] |
WU S, YIN J, LIU B, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar[C]// Lidar Remote Sensing for Environmental Monitoring ⅩⅣ. Beijing: International Society for Optics and Photonics, 2014: 92620H.
|
[18] |
WU S, LIU B, LIU J, et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 2016, 24(10):A762-A780. DOI: 10.1364/OE.24.00A762
|
[19] |
FENG L T, ZHOU J, FAN Q, et al. three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5):0512001(in Chinese). DOI: 10.3788/gzxb20194805.0512001
|
[20] |
LI C, ZHAO P E, PENG T, et al. Technical research of 3-D wind lidar[J]. Laser Technology, 2017, 41(5):703-707(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705017
|
[21] |
FUJITA T T. The downburst (report of projects NIMROD and JAWS)[R]. Chicage, USA:University of Chicago, 1985:122.
|
1. |
王鑫洋,郑佳锋,黄轩,陈杨瑞雪,任涛. 一次典型高原低空风切变的成因和发展演变特征研究. 成都信息工程大学学报. 2025(01): 72-78 .
![]() | |
2. |
孙启祯,叶家全. 我国西部地区机场风切变事件分布特性分析. 中国民航飞行学院学报. 2025(01): 10-14 .
![]() | |
3. |
白寒冰,郑佳锋,杜星,车玉章. 基于1.55μm激光雷达的雷暴风切变结构研究. 应用激光. 2024(01): 86-96 .
![]() | |
4. |
华志强,黄轩,赵启娜,田维东,孙永鑫. 西宁机场低空风切变特征统计及预警指标初探. 民航学报. 2024(03): 99-103+169 .
![]() | |
5. |
牛向华,黄轩,朱文会,郑佳锋,唐顺仙,任涛,程振. 1.55μm激光雷达高原机场下击暴流探测应用研究. 激光技术. 2024(03): 318-326 .
![]() | |
6. |
杨巧兰,蒋晓威,夏冬,黄照亮,李智标,邓丽洁. 地形和建筑触发珠海机场低空风切变数值模拟. 中山大学学报(自然科学版)(中英文). 2024(04): 47-60 .
![]() | |
7. |
王楠,程海艳,尹才虎. 测风激光雷达对孤立雷暴引发湿下击暴流的结构分析. 激光技术. 2024(05): 643-650 .
![]() | |
8. |
梁希豪,杨寅,冯亮,杜星,王清平. 基于测风激光雷达银川机场动量下传大风特征研究. 激光技术. 2023(03): 432-438 .
![]() | |
9. |
徐足音,吴俊杰. 相干测风雷达的风切变识别及预警研究. 气象水文海洋仪器. 2023(02): 71-74 .
![]() | |
10. |
吴俊杰,徐足音,王耀辉,杨传军,陈明. 相干测风激光雷达探测效能评估研究. 激光技术. 2023(05): 716-722 .
![]() | |
11. |
王楠,尹才虎,刘晓明,高晋徽. 乌鲁木齐机场一次冷锋型低空风切变过程的LiDAR分析. 激光技术. 2023(04): 565-571 .
![]() | |
12. |
张兆阳,孙宏,王奇,孙启祯,赵新斌,王一. 基于AHP和QAR数据的风切变风险管控. 项目管理技术. 2023(09): 115-120 .
![]() | |
13. |
白寒冰,陈诚,林彤. 基于1.55μm激光雷达的晴空风切变结构研究. 激光与红外. 2023(10): 1497-1504 .
![]() | |
14. |
吴俊杰,王耀辉,徐足音,任佳莉,张博义. 基于多普勒激光雷达的机场边界层高度研究. 激光技术. 2023(06): 778-785 .
![]() | |
15. |
黄轩,郑佳锋,张杰,马晓玲,田维东,华志强. 西宁机场一次低空风切变的结构和特征研究. 激光技术. 2022(02): 206-212 .
![]() | |
16. |
张千千,史纬恒,伍波,万家硕,成家豪,龚靖,赵青虎. 基于小波变换模极大值的LiDAR风切变预警算法. 激光技术. 2022(05): 610-617 .
![]() | |
17. |
李林,张治国,杜传耀,韦涛,于丽萍,范雪波. 多普勒测风激光雷达与L波段探空对比分析. 大气与环境光学学报. 2022(05): 494-505 .
![]() | |
18. |
王晋,田军委,刘雪松,张杰,张震. 湿微下击暴流对火炮外弹道精度影响分析. 弹箭与制导学报. 2022(06): 99-106 .
![]() |