Citation: | CHAO Xiangrui, HUANG Yong, CHEN Zipeng, XU Xuehu, LI Wenjian, WANG Ning, ZHANG Zhihu. Effect of laser remelting on microstructure and properties of In718 cladding layer[J]. LASER TECHNOLOGY, 2023, 47(4): 506-512. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.010 |
[1] |
黄海博, 孙文磊. Ni60激光熔覆工艺参量对涂层裂纹及厚度的影响[J]. 激光技术, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
HUANG H B, SUN W L. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. Laser Technology, 2021, 45(6): 788-793(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
|
[2] |
吴腾, 师文庆, 谢林圯. 激光熔覆铁基TiC复合涂层成形质量的控制方法[J]. 激光技术, 2022, 46(3): 344-354. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
WU T, SHI W Q, XIE L Y. Forming quality control method of laser cladding Fe-based TiC composite coating[J]. Laser Technology, 2022, 46(3): 344-354(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
|
[3] |
赵欣鑫, 肖华强, 游川川. TC4表面激光熔覆TiAl合金涂层的工艺和组织性能[J]. 激光技术, 2021, 45(6): 697-702. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004
ZHAO X X, XIAO H Q, YOU Ch Ch, et al. Process and microstructure properties of laser cladding TiAl alloy coating on TC4 surface[J]. Laser Technology, 2021, 45(6): 697-702(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004
|
[4] |
ZHANG Y, LI Z, NIE P, et al. Effect of cooling rate on the microstructure of laser-remelted Inconel718 coating[J]. Metallurgical & Materials Transactions, 2013, A44(12): 5513-5521. DOI: 10.1007/s11661-013-1903-8
|
[5] |
CHLEBUS E, GRUBER K, KUŹNICKA B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel718 processed by selective laser melting[J]. Materials Science & Engineering, 2015, A639: 647-655. https://www.sciencedirect.com/science/article/pii/S2214785317327189
|
[6] |
TABERNERO I, LAMIKIZ A, MARTÍNEZ S, et al. Evaluation of the mechanical properties of Inconel718 components built by laser cladding[J]. International Journal of Machine Tools & Manufacture, 2011, 51(6): 465-470. https://www.sciencedirect.com/science/article/pii/S0890695511000344
|
[7] |
鲁耀钟, 雷卫宁, 任维彬, 等. K418合金叶片激光再制造Inconel718覆层匹配与强化[J]. 激光技术, 2020, 44(1): 54-60. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.010
LU Y Zh, LEI W N, REN W B, et al. Matching and strengthening between Inconel718 cladding and K418 alloy blades by laser remanufacturing[J]. Laser Technology, 2020, 44(1): 54-60(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.010
|
[8] |
张杰, 张群莉, 姚建华. 激光熔覆工艺参数对In718合金组织及元素偏析的影响[J]. 热加工工艺, 2022, 51(19): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219006.htm
ZHANG J, ZHANG Q L, YAO J H. Effect of laser cladding process parameters on microstructure and element segregation of In718 alloy[J]. Hot Working Technology, 2022, 51(19): 30-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202219006.htm
|
[9] |
张尧成. 激光熔覆Inconel718合金涂层的成分偏聚与强化机理研究[D]. 上海: 上海交通大学, 2013: 61-90.
ZHANG Y Ch. Studies on component segregation and strengthening mechanism of laser cladding Inconel718 alloy coating[D]. Shanghai: Shanghai Jiaotong University, 2013: 61-90(in Chinese).
|
[10] |
LÜ H, LI Z, LI X, et al. Effect of vanadium content on the microstructure and mechanical properties of In718 alloy by laser cladding[J]. Materials, 2021, 14(9): 2362-2364.
|
[11] |
CHENG H M, LIU F C, et al. Microstructure and tensile property of electromagnetic stirring assisted laser repaired Inconel718 superalloy-sciencedirect[J]. Rare Metal Materials and Engineering, 2018, 47(10): 2949-2956. https://www.sciencedirect.com/science/article/pii/S1875537218302169
|
[12] |
聂学武, 周建忠, 徐家乐, 等. 超声振幅对激光熔覆WC/In718复合涂层组织及性能的影响[J]. 表面技术, 2020, 49(9): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202009024.htm
NIE X W, ZHOU J Zh, XU J L, et al. Effect of ultrasound amplitude on microstructure and properties of laser cladding WC/In718 composite coatings[J]. Surface Technology, 2020, 49(9): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202009024.htm
|
[13] |
张杰, 张群莉, 陈智君, 等. 固溶温度对激光增材制造Inconel718合金组织和性能的影响[J]. 表面技术, 2019, 48(2): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201902008.htm
ZHANG J, ZHANG Q L, CHEN Zh J, et al. Effects of solution temperature on microstructure and properties of Inconel718 alloy fabricatedvia laser additive manufacturing[J]. Surface Technology, 2019, 48(2): 47-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201902008.htm
|
[14] |
张群莉, 张杰, 李栋, 等. 不同时效温度下激光增材再制造In718合金层的组织与性能研究[J]. 稀有金属材料与工程, 2020, 49(5): 1785-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202005045.htm
ZHANG Q L, ZHANG J, LI D, et al. Microstructure and properties of laser additive remanufactured In718 alloy with different aging temperatures[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1785-1792 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202005045.htm
|
[15] |
席明哲, 高士友. 激光快速成形Inconel718超合金拉伸力学性能研究[J]. 中国激光, 2012, 39(3): 0303004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201203014.htm
XI M Zh, GAO Sh Y. Research on tensile properties of Inconel718 superalloy fabricated by laser rapid forming process[J]. Chinese Journal of Lasers, 2012, 39(3): 0303004(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201203014.htm
|
[16] |
CONG D, HONG Z, REN Z, et al. Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process[J]. Optics & Lasers in Engineering, 2014, 54(3): 55-61.
|
[17] |
张蕾涛, 李海涛, 贾润楠, 等. 激光重熔Ni60/50% WC复合涂层的制备及性能[J]. 金属热处理, 2021, 46(5): 229-234. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202105045.htm
ZHANG L T, LI H T, JIA R N, et al. Preparation and properties of laser remelted Ni60/50% WC composite coating[J]. Metal Heat Treatment, 2021, 46(5): 229-234(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202105045.htm
|
[18] |
GUBENKO S I, NIKUL'CHENKO I A. Fragmentation of nonmetallic inclusions during local remelting upon laser steel processing[J]. Steel in Translation, 2020, 50(3): 203-208.
|
[19] |
陈子豪, 孙文磊, 黄勇, 等. 镍基高温合金激光熔覆涂层组织及性能研究[J]. 激光技术, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
CHEN Z H, SUN W L, HUANG Y, et al. Microstructure and properties of nickel-based superalloy laser cladding coatings[J]. Laser Technology, 2021, 45(4): 441-447(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
|
[20] |
陈源. 激光增材制造Inconel718合金裂纹形成机制及其控制[D]. 上海: 上海交通大学, 2017: 39-45.
CHEN Y. Studies on formation mechanism and control methods of cracking in laser additive manufactured Inconel718 alloy[D]. Shanghai: Shanghai Jiaotong University, 2017: 39-45(in Chinese).
|
[21] |
XIN B, REN J, WANG X, et al. Effect of laser remelting on cladding layer of Inconel718 superalloy formed by laser metal deposition[J]. Materials, 2020, 13(21): 4927.
|
[22] |
黄卫东. 激光立体成形[M]. 西安: 西北工业大学出版社, 2007: 284-300.
HUANG W D. Laser stereoforming[M]. Xi'an: Northwestern Polytechnical University Press, 2007: 284-300(in Chinese).
|
[1] | YE Dong, LI Junyao, LI Zongchen, ZHANG Yi. Study of propagation characteristics of polarization singularities based on fractional vortex beams[J]. LASER TECHNOLOGY, 2024, 48(2): 261-267. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.018 |
[2] | XUE Lu, HU Wenjing, XU Bin, LIU Xuefeng, YAO Zhengpeng, CHEN Zhilong, HUANG Yijun, XIONG Jichuan. Quantitative characterization of nasolabial sulcus using polarization parametric indirect macroscopic imaging[J]. LASER TECHNOLOGY, 2023, 47(4): 572-578. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.020 |
[3] | HE Yifan, SHEN Yuting, WANG Wenxiao, TIAN Youwei. Effect of initial phase of laser pulse on electron radiation[J]. LASER TECHNOLOGY, 2023, 47(1): 103-107. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.016 |
[4] | WANG Haoran, XIA Fuyuan, TIAN Youwei. Simulation calculation of the influence of pulse width on the peak radiation of laser impact electron[J]. LASER TECHNOLOGY, 2022, 46(4): 561-566. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.020 |
[5] | LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001 |
[6] | WANG Jian-min, ZHOU Qun-li, JIANG Yin-fang, ZHANG Meng-lei, CHENG Ke-sheng, WAN Li, ZHAO Yan. Numerical simulation of sheet deformation by hollow laser shock[J]. LASER TECHNOLOGY, 2012, 36(6): 727-730. DOI: 10.3969/j.issn.1001-3806.2012.06.004 |
[7] | DAI Bao-jiang, CHEN Feng, ZHANG Dong-shi, DU Guang-qing, MENG Xiang-wei. 飞秒激光制备波导型光合波器的数值模拟[J]. LASER TECHNOLOGY, 2012, 36(2): 251-254,264. DOI: 10.3969/j.issn.1001-3806.2012.02.029 |
[8] | LI Xiao-feng, ZHOU Xin, LU Xi, WU Bo, YANG Ze-hou, CHEN Yong, ZHOU Ding-fu, HOU Tian-jin. Numerical simulation and analysis of laser transmitting characteristic in smog[J]. LASER TECHNOLOGY, 2010, 34(3): 381-384. DOI: 10.3969/j.issn.1001-3806.2010.03.027 |
[9] | LIU Hou-tong, WANG Zhen-zhu, LI Chao, HUANG Wei, ZHOU Jun. Numerical simulation analysis for detectability of spaceborne lidars[J]. LASER TECHNOLOGY, 2008, 32(6): 614-617. |
[10] | LIU Shun-hong, JI Qiao-jie, YANG Jing. Numerical simulation on laser bending of steel tubes[J]. LASER TECHNOLOGY, 2006, 30(4): 355-359. |
1. |
赵军峰,冯斌,王浩圣. 高性能半导体激光器电源系统设计与研究. 应用激光. 2024(02): 113-124 .
![]() | |
2. |
盖俊帅,马玉婷,张运海,杨皓旻,刘玉龙. 用于眼底成像的双光楔裂像电控调焦系统. 激光技术. 2024(04): 484-490 .
![]() | |
3. |
郭俊超,韩耀锋,张晓辉,李龙骧,王诚,寿少峻,马世伟,孙翌乔. 机载130 mJ激光照射器的脉冲驱动电源设计. 激光杂志. 2024(09): 14-18 .
![]() | |
4. |
金冬月,洪福临,张万荣,张洪源,王毅华,王焕哲,王楷尧,关宝璐. 垂直腔面发射激光器阵列的热设计研究进展. 激光技术. 2024(06): 777-789 .
![]() | |
5. |
王婷,魏明,宋巍. 窄脉冲激光器驱动电路延时反馈控制研究. 激光杂志. 2024(12): 40-44 .
![]() | |
6. |
许源,王武,倪小龙,闫钰锋,于信,白素平. 一种GaN FET的窄脉冲激光器驱动电源系统设计. 计算机测量与控制. 2022(09): 272-279 .
![]() |