Advanced Search
LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001
Citation: LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001

Study on numerical simulation of residual stresses induced by laser shock processing

More Information
  • Received Date: December 15, 2015
  • Revised Date: January 15, 2016
  • Published Date: January 24, 2017
  • In order to obtain the residual stress field induced by laser shock processing(LSP), the numerical simulation method was used. A 2-D and axisymmetric finite element analysis(FEA)model of single laser shock processing on 35CD4 thick parts was established. History of the energies of material during dynamic analysis and surface dynamic stresses at different times were analyzed to validate the reasonability of the total time of dynamic analysis. The effect of mesh refinement and spatial distribution models of the loading on the simulation results were discussed. The results show that the element length should be around 0.03mm to get convergent results. The predicted results for single LSP with round laser spot are consistent with the available experimental data.
  • [1]
    YANG X H, TANG X D, XUE M Q. Effect of laser shock on residual stress of diesel engine crankshaft chamfer[J]. Laser Technology, 2010, 34(5):596-599(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201005007.htm
    [2]
    LI Y H. Laser shock processing theory and technology[M]. Beijing:Science Press, 2013:11-16(in Chinese).
    [3]
    BRAISTED W, BROCKMAN R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7):719-724. DOI: 10.1016/S0142-1123(99)00035-3
    [4]
    NAM T. Finite analysis of residual stress field induced by laser shock peening[D]. Columbus, USA: The Ohio State University, 2002: 54-76.
    [5]
    HU Y, YAO Z, HU J. 3-D FEM simulation of laser shock processing[J]. Surface and Coatings Technology, 2006, 201(3):1426-1435. http://www.sciencedirect.com/science/article/pii/s0257897206001575
    [6]
    BHAMARE S, RAMAKRISHNAN G, MANNAVA S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface and Coatings Technology, 2013, 232(232):464-474. http://www.sciencedirect.com/science/article/pii/S0257897213004957
    [7]
    ACHINTHA M, NOWELL D. Eigenstrain modelling of residual stresses generated by laser shock peening[J]. Journal of Materials Processing Technology, 2011, 211(6):1091-1101. DOI: 10.1016/j.jmatprotec.2011.01.011
    [8]
    JIANG Y F, DING B, CHENG Zh J, et al. Effect of laser peening area on residual stress field in small-hole specimens[J]. Laser Technology, 2014, 38(2):201-204(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201402012.htm
    [9]
    SHEN L D, CHEN J F, LI X Ch, et al. Finite element analysis on residual stress field for laser shock processing AM50 magnesium alloy[J]. Laser Technology, 2012, 36(1):45-49(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201201014.htm
    [10]
    PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminum alloys. Application to high cycle fatigue behavior[J]. Materials Science and Engineering, 1996, A210(1/2):102-113. http://www.sciencedirect.com/science/article/pii/0921509395100849
    [11]
    WEI X L, LING X. Numerical modeling of residual stress induced by laser shock processing[J]. Applied Surface Science, 2014, 301(20):557-563. http://www.sciencedirect.com/science/article/pii/S0169433214004322
    [12]
    BALLARD P. Residual stresses induced by rapid impact-applications of laser shocking[D]. Palaiseau, France: Ecole Polytechnique, 1991: 20-56.
    [13]
    ZHANG W, YAO Y L, NOYAN I C. Microscale laser shock peening of thin films, part 1:experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1):10-17. DOI: 10.1115/1.1645878
    [14]
    KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity, 2004, 20(12):2233-2248. DOI: 10.1016/j.ijplas.2003.06.005
    [15]
    ZERILLI F J. Dislocation mechanics-based constitutive equations[J]. Metallurgical and Materials Transactions, 2004, A35(9):2547-2555. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024678004/
    [16]
    JIANG Y F, LAI Y L, ZHANG L, et al. Investigation of residual stress hole on a metal surface by laser shock[J]. Chinese Journal of Lasers, 2010, 37(8):2073-2079(in Chinese). DOI: 10.3788/CJL
  • Related Articles

    [1]ZHANG Peng, FENG Zhihua, ZHANG Pengfei, ZHAO Yuanming, RUAN Youtian, HAN Wenjie, ZHANG Hui, KANG Zhaoyang. Frequency modulation continuous wave laser ranging technique utilized matched filtering[J]. LASER TECHNOLOGY, 2025, 49(1): 53-61. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.009
    [2]XU Qiang, SHEN Si, XIE Xiumin, WU Peng, ZHOU Qiang, DENG Guangwei, WANG You, SONG Haizhi. Quantum optics techniques for laser detecting and ranging[J]. LASER TECHNOLOGY, 2021, 45(1): 44-47. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.008
    [3]ZHANG Biao, ZHOU Guoqing, ZHOU Xiang, CHENG Xiaohui. Design of multi-channel ranging system for lidar[J]. LASER TECHNOLOGY, 2016, 40(4): 576-581. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.025
    [4]QIAN Xiaodong, LI Xiru, LIANG Xu, BAO Jian, ZHANG Shuo. Synchronous control for MOPA excimer laser systems[J]. LASER TECHNOLOGY, 2015, 39(2): 233-236. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.019
    [5]HE Ting, NIU Yan-xiong, ZHANG Peng, WANG Cai-li, CUI Yun-xia, NIU Hai-sha. 激光主动侦察作用距离的研究[J]. LASER TECHNOLOGY, 2012, 36(2): 213-216. DOI: 10.3969/j.issn.1001-3806.2012.02.018
    [6]HAN Hong-wei, ZHANG Xiao-hui, GE Wei-long. A variable step scan method for underwater range-gated imaging[J]. LASER TECHNOLOGY, 2011, 35(2): 226-229,259. DOI: 10.3969/j.issn.1001-3806.2011.02.023
    [7]LEI Xuan-hua, YANG Ke-cheng. A synchronization controller based on FPGA for an underwater laser imaging system[J]. LASER TECHNOLOGY, 2010, 34(5): 682-685. DOI: 10.3969/j.issn.1001-3806.2010.O5.029
    [8]XIE Xing-sheng, FANG Yong-wen, WU Yun-feng, YE Yu-tang, CHEN Chang-bin, LI Chang-cheng, WANG Bing-xue. Infrared laser ranging in auto adaptive cruise control system[J]. LASER TECHNOLOGY, 2004, 28(5): 521-523,530.
    [9]An Yuying, Zeng Xiaodong, Liu Jinsong. Passive ranging of laser source by single station[J]. LASER TECHNOLOGY, 1998, 22(2): 129-130.
    [10]Tang Zhengxing. Measurement and test technology of laser tracking and ranging[J]. LASER TECHNOLOGY, 1997, 21(6): 346-349.

Catalog

    Article views (7) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return