Citation: | LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001 |
[1] |
YANG X H, TANG X D, XUE M Q. Effect of laser shock on residual stress of diesel engine crankshaft chamfer[J]. Laser Technology, 2010, 34(5):596-599(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201005007.htm
|
[2] |
LI Y H. Laser shock processing theory and technology[M]. Beijing:Science Press, 2013:11-16(in Chinese).
|
[3] |
BRAISTED W, BROCKMAN R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7):719-724. DOI: 10.1016/S0142-1123(99)00035-3
|
[4] |
NAM T. Finite analysis of residual stress field induced by laser shock peening[D]. Columbus, USA: The Ohio State University, 2002: 54-76.
|
[5] |
HU Y, YAO Z, HU J. 3-D FEM simulation of laser shock processing[J]. Surface and Coatings Technology, 2006, 201(3):1426-1435. http://www.sciencedirect.com/science/article/pii/s0257897206001575
|
[6] |
BHAMARE S, RAMAKRISHNAN G, MANNAVA S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface and Coatings Technology, 2013, 232(232):464-474. http://www.sciencedirect.com/science/article/pii/S0257897213004957
|
[7] |
ACHINTHA M, NOWELL D. Eigenstrain modelling of residual stresses generated by laser shock peening[J]. Journal of Materials Processing Technology, 2011, 211(6):1091-1101. DOI: 10.1016/j.jmatprotec.2011.01.011
|
[8] |
JIANG Y F, DING B, CHENG Zh J, et al. Effect of laser peening area on residual stress field in small-hole specimens[J]. Laser Technology, 2014, 38(2):201-204(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201402012.htm
|
[9] |
SHEN L D, CHEN J F, LI X Ch, et al. Finite element analysis on residual stress field for laser shock processing AM50 magnesium alloy[J]. Laser Technology, 2012, 36(1):45-49(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201201014.htm
|
[10] |
PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminum alloys. Application to high cycle fatigue behavior[J]. Materials Science and Engineering, 1996, A210(1/2):102-113. http://www.sciencedirect.com/science/article/pii/0921509395100849
|
[11] |
WEI X L, LING X. Numerical modeling of residual stress induced by laser shock processing[J]. Applied Surface Science, 2014, 301(20):557-563. http://www.sciencedirect.com/science/article/pii/S0169433214004322
|
[12] |
BALLARD P. Residual stresses induced by rapid impact-applications of laser shocking[D]. Palaiseau, France: Ecole Polytechnique, 1991: 20-56.
|
[13] |
ZHANG W, YAO Y L, NOYAN I C. Microscale laser shock peening of thin films, part 1:experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1):10-17. DOI: 10.1115/1.1645878
|
[14] |
KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity, 2004, 20(12):2233-2248. DOI: 10.1016/j.ijplas.2003.06.005
|
[15] |
ZERILLI F J. Dislocation mechanics-based constitutive equations[J]. Metallurgical and Materials Transactions, 2004, A35(9):2547-2555. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024678004/
|
[16] |
JIANG Y F, LAI Y L, ZHANG L, et al. Investigation of residual stress hole on a metal surface by laser shock[J]. Chinese Journal of Lasers, 2010, 37(8):2073-2079(in Chinese). DOI: 10.3788/CJL
|
[1] | ZHANG Peng, FENG Zhihua, ZHANG Pengfei, ZHAO Yuanming, RUAN Youtian, HAN Wenjie, ZHANG Hui, KANG Zhaoyang. Frequency modulation continuous wave laser ranging technique utilized matched filtering[J]. LASER TECHNOLOGY, 2025, 49(1): 53-61. DOI: 10.7510/jgjs.issn.1001-3806.2025.01.009 |
[2] | XU Qiang, SHEN Si, XIE Xiumin, WU Peng, ZHOU Qiang, DENG Guangwei, WANG You, SONG Haizhi. Quantum optics techniques for laser detecting and ranging[J]. LASER TECHNOLOGY, 2021, 45(1): 44-47. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.008 |
[3] | ZHANG Biao, ZHOU Guoqing, ZHOU Xiang, CHENG Xiaohui. Design of multi-channel ranging system for lidar[J]. LASER TECHNOLOGY, 2016, 40(4): 576-581. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.025 |
[4] | QIAN Xiaodong, LI Xiru, LIANG Xu, BAO Jian, ZHANG Shuo. Synchronous control for MOPA excimer laser systems[J]. LASER TECHNOLOGY, 2015, 39(2): 233-236. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.019 |
[5] | HE Ting, NIU Yan-xiong, ZHANG Peng, WANG Cai-li, CUI Yun-xia, NIU Hai-sha. 激光主动侦察作用距离的研究[J]. LASER TECHNOLOGY, 2012, 36(2): 213-216. DOI: 10.3969/j.issn.1001-3806.2012.02.018 |
[6] | HAN Hong-wei, ZHANG Xiao-hui, GE Wei-long. A variable step scan method for underwater range-gated imaging[J]. LASER TECHNOLOGY, 2011, 35(2): 226-229,259. DOI: 10.3969/j.issn.1001-3806.2011.02.023 |
[7] | LEI Xuan-hua, YANG Ke-cheng. A synchronization controller based on FPGA for an underwater laser imaging system[J]. LASER TECHNOLOGY, 2010, 34(5): 682-685. DOI: 10.3969/j.issn.1001-3806.2010.O5.029 |
[8] | XIE Xing-sheng, FANG Yong-wen, WU Yun-feng, YE Yu-tang, CHEN Chang-bin, LI Chang-cheng, WANG Bing-xue. Infrared laser ranging in auto adaptive cruise control system[J]. LASER TECHNOLOGY, 2004, 28(5): 521-523,530. |
[9] | An Yuying, Zeng Xiaodong, Liu Jinsong. Passive ranging of laser source by single station[J]. LASER TECHNOLOGY, 1998, 22(2): 129-130. |
[10] | Tang Zhengxing. Measurement and test technology of laser tracking and ranging[J]. LASER TECHNOLOGY, 1997, 21(6): 346-349. |