HTML
-
对于瞬态应力分析,网格密度对模拟结果影响很大。一般网格单元尺寸越细,分析结果越准确,但计算时间也会大大增长。为了精确捕捉到应力波而又尽可能减少计算时间,需要找到一个合适的网格密度。为了评估网格密度对结果的影响,采用最小有限元单元尺寸为0.10mm, 0.05mm, 0.03mm, 0.02mm分别进行模拟计算,如表 1所示。
finite element model finite element infinite element element length Le /mm mesh densityLe/rp A 60×60 2×60 0.10 2.5% B 120×120 2×120 0.05 1.25% C 200×200 2×200 0.03 0.75% D 300×300 2×300 0.02 0.5% Table 1. Configurations of four meshed finite element models
此外,显式分析增量时间步长Δt对模拟结果的收敛性和准确性有很大的影响。如果增量时间步长大于稳定极限Δtstable,模拟过程的不稳定性或许会导致无界解。一般而言,稳定极限难以精确测定,可以利用如下所示的计算公式来进行估算:
式中, Le为最小网格单元尺寸;Cd为弹性波在材料中传播的波速,可以通过公式${C_{\rm{d}}} = \sqrt {\frac{{\left( {1 - \nu } \right)E}}{{\mathit{\rho }\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}}} $得到,计算得到Cd=5.94×103m/s。如果最小网格单元尺寸为Le=0.03mm,则计算得到的增量时间步长Δt=Δtstable=5.0ns。
在显式分析计算4500ns后,得到了不同网格单元尺寸下沿着径向的表面动态应力σd, 如图 4所示。可以看出, 网格单元尺寸为0.02mm和0.03mm的表面动态应力分布的计算结果基本接近,而与网格单元尺寸为0.10mm的结果相差较大。综合考虑收敛性和计算效率,后续模拟计算均选用有限元单元尺寸为0.03mm。
-
采用均匀压力空间分布模型来进行模拟计算,参照参考文献[5],初步选择的显式求解时间为4500ns,从能量和表面动态应力变化两个方面对激光冲击瞬间靶材的动态响应过程进行分析。
-
在单次激光冲击材料表面时,靶材能量历史变化曲线如图 5所示。激光冲击波对整个靶材表面产生的外力功Wt在100ns内迅速由0mJ增加到330mJ,并在随后转变为材料的内能Wi、动能Wk和黏性耗散能Wv。1000ns以后,动能和内能急剧减少,分别逐渐趋于0mJ和146mJ,而黏性耗散能则迅速增加到150mJ,最后稳定在185mJ左右。由前面计算可知,弹性波在该材料中传播的波速为5.94×103m/s,由此可推算出弹性波在1000ns刚好传播至无反射边界处,导致各能量的急剧变化。
弹性存储能We在90ns内急剧上升到127mJ,然后在1000ns以后急剧减少,最后稳定在17mJ左右。塑性耗散能Wp在300ns内急剧上升到125mJ,在2000ns以后稳定在128.8mJ左右,说明后续没有塑性变形发生,所以选取显式求解时间为4500ns是合理的。此外,伪应变能Wa在整个求解时间范围内不超过0.06mJ,说明采用的网格模型是合理的,在计算过程中不会因为采用了减积分单元CAX4R而引起“沙漏”问题。
-
由于存在弹性变形和塑性变形,靶材的应力状态只有在某个时间节点以后才能达到稳定状态。图 6所示是在不同时刻沿着轴向的表面动态应力σd的变化情况。在500ns时,应力波动幅度较大; 1500ns时, 在光斑中心处附近出现了超过800MPa的拉应力,这是由于光斑边缘产生的稀疏波传至光斑中心所致;而在4000ns以后,应力分布趋于稳定,再次验证了选取求解时间为4500ns的合理性。
-
采用3种不同空间分布冲击载荷模型得到的残余应力模拟结果如图 7所示。其中均匀分布、高斯分布两种模型在距光斑中心0.27mm和4mm处均出现了由于很大应力变化而引起的应力尖峰,且前者的变化程度更剧烈,而NAM的模型分布没有这两个尖峰。相比其它两种分布,均匀分布在距中心1.5mm~4mm范围内残余压应力更趋于稳定。而在光斑中心沿不同深度处的残余应力σr分布上,三者的残余压应力影响层深度分别为0.86mm, 0.81mm和0.76mm,并分别在0.33mm, 0.39mm和0.13mm深度处达到最大残余应力-396MPa,-352MPa和-416MPa。这是由于3种空间分布冲击载荷模型在光斑边缘附近的压力大小及分布存在较大差别,这样使得在光斑边缘模拟产生的稀疏波和剪切波大小及特性不一样,最后导致靶材中形成的残余应力场存在一定差距。