Advanced Search
GAI Junshuai, MA Yuting, ZHANG Yunhai, YANG Haomin, LIU Yulong. An electronically controlled focusing system using dual light wedge split image for fundus imaging[J]. LASER TECHNOLOGY, 2024, 48(4): 484-490. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.005
Citation: GAI Junshuai, MA Yuting, ZHANG Yunhai, YANG Haomin, LIU Yulong. An electronically controlled focusing system using dual light wedge split image for fundus imaging[J]. LASER TECHNOLOGY, 2024, 48(4): 484-490. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.005

An electronically controlled focusing system using dual light wedge split image for fundus imaging

More Information
  • Received Date: July 27, 2023
  • Revised Date: August 24, 2023
  • Published Date: July 24, 2024
  • In order to achieve precise focusing during fundus imaging, an electronically controlled focusing system using dual light wedge split image was designed. A 905 nm near-infrared semiconductor laser was used to form a rectangular sight mark on the retina through a dual light wedge and a rectangular slit. The movement of the sight compensation mirror and the dual light wedge mechanism was realized by motor control, and the displacement correlation between the sight compensation mirror and the dual light wedge was obtained. According to the separation of the rectangular sight mark, the defocus compensation state was real-time feedback, and the control system was guided to move the dual light wedge and the sight compensation mirror to achieve accurate focusing during fundus imaging. The focusing experiment of fundus imaging was conducted on the simulated eye, and the result showed that system can achieve -10 m-1~10 m-1 refractive compensation, and the focusing accuracy was more than 1 m-1. The electronically controlled focusing system using dual light wedge split image has fast focusing speed and high precision, which provides a basis for the development of automatic fundus imaging instruments.
  • [1]
    TENBERGE J C, FAZIL Z, BORN L I, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract[J]. Acta Ophthalmologica, 2019, 97(2): 185-192. DOI: 10.1111/aos.13899
    [2]
    SEMERARO F, MORESCALCHI F, CANCARINI A, et al. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications[J]. Diabetes & Metabolism, 2019, 45(6): 517-527.
    [3]
    ARONOV M, ALLON R, STAVE D, et al. Retinal vascular signs as screening and prognostic factors for chronic kidney disease: A systematic review and meta-analysis of current evidence[J]. Journal of Personalized Medicine, 2021, 11(7): 665-692. DOI: 10.3390/jpm11070665
    [4]
    GUADRON L, TITCHENER S A, ABBOTT C J, et al. The saccade main sequence in patients with retinitis pigmentosa and advanced age-related macular degeneration[J]. Invest Ophthalmology & Visual Science, 2023, 64(3): 1-18.
    [5]
    王曼丽, 李博, 张瑞瑞, 等. 免散瞳眼底照相联合人工智能糖尿病视网膜病变筛查系统在内分泌科的应用价值[J]. 中国糖尿病杂志, 2022, 30(11): 808-811. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTL202211002.htm

    WANG M L, LI B, ZHANG R R, et al. Application value of non-mydriatic fundus photography combined with artificial intelligence diabetic retinopathy screening system in endocrinology department[J]. Chinese Journal of Diabetes, 2022, 30(11): 808-811(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTL202211002.htm
    [6]
    PALMER D W, COPPIN T, RANA K, et al. Glare-free retinal imaging using a portable light field fundus camera[J]. Biomedical Optics Express, 2018, 9(7): 3178-3192. DOI: 10.1364/BOE.9.003178
    [7]
    KUMAR V, SURVE A, KUMAWAT D, et al. Ultra-wide field retinal imaging: A wider clinical perspective[J]. Indian Journal of Ophthalmol, 2021, 69(4): 824-835. DOI: 10.4103/ijo.IJO_1403_20
    [8]
    WEILIN C, JUN C, XUEHUI Z, et al. Optical design and fabrication of a smartphone fundus camera[J]. Applied Optics, 2021, 60(5): 1420-1427. DOI: 10.1364/AO.414325
    [9]
    张运海, 赵改娜, 张中华, 等. 免散瞳眼底照相机的精密调焦[J]. 光学精密工程, 2009, 17(5): 1014-1019. DOI: 10.3321/j.issn:1004-924X.2009.05.012

    ZHANG Y H, ZHAO G N, ZHANG Zh H, et al. Accurate focusing of non-mydiratic fundus camera[J]. Optics and Precision Engineering, 2009, 17(5): 1014-1019(in Chinese). DOI: 10.3321/j.issn:1004-924X.2009.05.012
    [10]
    李春才, 巩岩, 李晶, 等. 可诱导人眼自动调焦的眼底相机光学系统设计[J]. 光学学报, 2014, 34(4): 0422001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201404035.htm

    LI Ch C, GONG Y, LI J, et al. Optical design of an inducible human eye accommodation fundus camera[J]. Acta Optica Sinica, 2014, 34(4): 0422001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201404035.htm
    [11]
    马晨, 程德文, 王其为, 等. 基于高斯括号法的液体透镜调焦眼底相机光学系统设计[J]. 光学学报, 2014, 34(11): 1122001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201411040.htm

    MA Ch, CHENG D W, WANG Q W, et al. Optical system design of a liquid tunable fundus camera based on Gaussian brackets method[J]. Acta Optica Sinica, 2014, 34(11): 1122001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201411040.htm
    [12]
    FAIZAL H, RENOH C, CHIONG H S, et al. A new approach to non-mydriatic portable fundus imaging[J]. Expert Review of Medical Devices, 2022, 19(4): 303-314. DOI: 10.1080/17434440.2022.2070004
    [13]
    江剑宇, 杨波, 万新军, 等. 便携式免散瞳带信标眼底相机光学系统[J]. 光学技术, 2019, 45(2): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201902021.htm

    JIANG J Y, YANG B, WAN X J, et al. A portable and mydirtic-free fundus optical system with a beacon[J]. Optical Technique, 2019, 45(2): 240-244(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201902021.htm
    [14]
    NIE Z, ZHU C, WANG Q, et al. Design, analysis and application of a new disturbance rejection PID for uncertain systems[J]. ISA Transactions, 2020, 101: 281-294. DOI: 10.1016/j.isatra.2020.01.022
    [15]
    ISSA M. Enhanced arithmetic optimization algorithm for parameter estimation of PID controller[J]. Arabian Journal for Science and Engineering, 2023, 48(2): 2191-2205. DOI: 10.1007/s13369-022-07136-2
    [16]
    郝晓剑, 张罗新. 基于半导体激光器的Tornambe控制算法研究[J]. 激光技术, 2021, 45(5): 670-674. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.022

    HAO X J, ZHANG L X. Research on Tornambe control algorithm based on semiconductor laser[J]. Laser Technology, 2021, 45(5): 670-674(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.05.022
    [17]
    徐一帆, 施阳杰, 邵景珍, 等. 大功率半导体激光器的高精度脉冲电源设计[J]. 激光技术, 2023, 47(1): 108-114. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017

    XU Y F, SHI Y J, SHAO J Zh, et al. Design of high-precision pulse power supply for high-power semiconductor laser[J]. Laser Technology, 2023, 47(1): 108-114(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017
    [18]
    田晶. 基于NUFFT的多光谱数据同步采集与处理系统设计[J]. 激光技术, 2020, 44(3): 353-357. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.015

    TIAN J. Design of multi-spectral data synchron-ous acquisition and processing system based on NUFFT[J]. Laser Technology, 2020, 44(3): 353-357(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.03.015
    [19]
    赵宏杰, 李冶. 医疗设备中开关电源的隔离和应用[J]. 医疗装备, 2020, 33(5): 43-45. DOI: 10.3969/j.issn.1002-2376.2020.05.020

    ZHAO H J, LI Y. Isolation and application analysis of switching power supply in medical equipment[J]. Medical Equipment, 2020, 33(5): 43-45(in Chinese). DOI: 10.3969/j.issn.1002-2376.2020.05.020
    [20]
    田泽礼, 牛春晖, 陈青山. 高速多光谱辐射测温系统研制[J]. 激光技术, 2022, 46(6): 773-778. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010

    TIAN Z L, NIU Ch H, CHEN Q Sh. Development of high-speed multi-spectral radiation temperature measurement system[J]. Laser Technology, 2022, 46(6): 773-778(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.06.010
    [21]
    中国机械工业联合会. 激光产品的安全第一部分: 设备分类, 要求: GB7247.1—2012[S]. 北京: 中国标准出版社, 2012.

    CHINA MACHINERY INDUSTRY FEDERATION. Safety of laser products——Part 1: Equipment classification and requirements: GB7247.1—2012[S]. Beijing: China Standard Press, 2012(in Chinese).

Catalog

    Article views (14) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return