Citation: | HE Yifan, SHEN Yuting, WANG Wenxiao, TIAN Youwei. Effect of initial phase of laser pulse on electron radiation[J]. LASER TECHNOLOGY, 2023, 47(1): 103-107. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.016 |
[1] |
VAIS O E, BYCHENKOV V Y. Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons[J]. Plasma Physics and Controlled Fusion, 2021, 63(1): 014002. DOI: 10.1088/1361-6587/abc92a
|
[2] |
KOZÁK M. All-optical scheme for generation of isolated attosecond electron pulses[J]. Physical Review Letters, 2019, 123(20): 203202. DOI: 10.1103/PhysRevLett.123.203202
|
[3] |
COUSENS S, REVILLE B, DROMEY B, et al. Temporal structure of attosecond pulses from laser-driven coherent synchrotron emission[J]. Physical Review Letters, 2016, 116(8): 083901. DOI: 10.1103/PhysRevLett.116.083901
|
[4] |
VENKAT P, HOLKUNDKAR A R. Higher harmonics and attosecond pulse generation by laser induced Thomson scattering in atomic clusters[J]. Physical Review Accelerators and Beams, 2019, 22(8): 084401. DOI: 10.1103/PhysRevAccelBeams.22.084401
|
[5] |
KOZÁK M, SCHÖNENBERGER N, HOMMELHOFF P. Ponderomotive generation and detection of attosecond free-electron pulse trains[J]. Physical Review Letters, 2018, 120(10): 103203. DOI: 10.1103/PhysRevLett.120.103203
|
[6] |
HACK S, VARRÓ S, CZIRJÁK A. Carrier-envelope phase controlled isolated attosecond pulses in the nm wavelength range, based on coherent nonlinear Thomson-backscattering[J]. New Journal of Phy-sics, 2018, 20(7): 073043. DOI: 10.1088/1367-2630/aad2aa
|
[7] |
FRYDRYCH S, VORBERGER J, HARTLEY N J, et al. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter[J]. Nature Communications, 2020, 11(1): 1-7. DOI: 10.1038/s41467-019-13993-7
|
[8] |
KARBSTEIN F, MOSMAN E A. X-ray photon scattering at a focused high-intensity laser pulse[J]. Physical Review D, 2019, 100(3): 033002. DOI: 10.1103/PhysRevD.100.033002
|
[9] |
RYKOVANOV S G, GEDDES C G R, SCHROEDER C B, et al. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping[J]. Physical Review Accelerators and Beams, 2016, 19(3): 30701. DOI: 10.1103/PhysRevAccelBeams.19.030701
|
[10] |
CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluore-scence computed tomography based on a Thomson scattering light source: A Monte Carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. DOI: 10.1107/S1600577520003574
|
[11] |
TAIRA Y, HAYAKAWA T, KATOH M. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light[J]. Scientific Reports, 2017, 7(1): 1-9. DOI: 10.1038/s41598-016-0028-x
|
[12] |
WANG Y, WANG C, ZHOU Q, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations[J]. Laser Physics, 2021, 31(1): 015301. DOI: 10.1088/1555-6611/abd3f7
|
[13] |
VAIS O E, BYCHENKOV V Y. Nonlinear Thomson scattering of a tightly focused relativistically intense laser pulse by an ensemble of particles[J]. Quantum Electronics, 2020, 50(10): 922. DOI: 10.1070/QEL17344
|
[14] |
YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. DOI: 10.1038/nphoton.2017.100
|
[15] |
WANG Y, ZHOU Q, ZHUANG J, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses[J]. Optics Express, 2021, 29(14): 22636-22647. DOI: 10.1364/OE.426529
|
[16] |
LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J/OL]. (2019-02-26)[2021-12-26]. https://www.sciencedirect.com/science/article/pii/S0030402619302712.
|
[17] |
WANG Y, WANG C, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2021, 18(1): 015303. DOI: 10.1088/1612-202X/abd170
|
[18] |
严以律, 周希, 任山令, 等. 电子初始位置对高能电子空间辐射的影响[J]. 激光技术, 2022, 46(4): 556-560. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
YAN Y L, ZHOU X, REN Sh L, et al. Effect of initial position of electron on space radiation of high energy electron[J]. Laser Technology, 2022, 46(4): 556-560(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
|
[19] |
YU P, LIN H, GU Z, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses[J]. Laser Physics, 2020, 30(4): 045301. DOI: 10.1088/1555-6611/ab74d4
|
[20] |
WU Y, LIU Y, LIU D, et al. Effect of circularly polarized laser pulse beam waist radius on the dynamic and radiation characteristics of collided electrons[J]. Laser Physics, 2020, 30(11): 115301. DOI: 10.1088/1555-6611/abb6e5
|
[21] |
SHI Y, WANG J, WU B, et al. Nonlinear Thomson scattering of a relativistic elliptically polarized laser with varied incident pulse widths[J]. Laser Physics, 2021, 31(10): 105401. DOI: 10.1088/1555-6611/ac250e
|