Advanced Search
HE Yifan, SHEN Yuting, WANG Wenxiao, TIAN Youwei. Effect of initial phase of laser pulse on electron radiation[J]. LASER TECHNOLOGY, 2023, 47(1): 103-107. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.016
Citation: HE Yifan, SHEN Yuting, WANG Wenxiao, TIAN Youwei. Effect of initial phase of laser pulse on electron radiation[J]. LASER TECHNOLOGY, 2023, 47(1): 103-107. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.016

Effect of initial phase of laser pulse on electron radiation

More Information
  • Received Date: November 25, 2021
  • Revised Date: January 03, 2022
  • Published Date: January 24, 2023
  • In order to study the influence of the initial phase of ultrashort and super elliptically polarized laser on the radiation characteristics of high-energy electrons, the collision model of high-energy electrons and high-energy laser field was constructed by Lorentz equation and electron energy equation, and the numerical simulation was carried out by MATLAB. The data and images of electron trajectory and power and energy distribution of spatial radiation of laser field were obtained. The 3-D radiation characteristics corresponding to different initial laser phases were studied. The results show that when the laser pulse strikes the electron, the electron produces radiation, and the radiation power presents a double peak shape. The radiation power image of high-energy electrons shows symmetrical double peaks when the initial phase is 0°, 180° and 360°. The conclusion provides a certain basis for the study of initial phase 3-D inverse detection of ultrashort and ultra strong elliptically polarized laser.
  • [1]
    VAIS O E, BYCHENKOV V Y. Complementary diagnostics of high-intensity femtosecond laser pulses via vacuum acceleration of protons and electrons[J]. Plasma Physics and Controlled Fusion, 2021, 63(1): 014002. DOI: 10.1088/1361-6587/abc92a
    [2]
    KOZÁK M. All-optical scheme for generation of isolated attosecond electron pulses[J]. Physical Review Letters, 2019, 123(20): 203202. DOI: 10.1103/PhysRevLett.123.203202
    [3]
    COUSENS S, REVILLE B, DROMEY B, et al. Temporal structure of attosecond pulses from laser-driven coherent synchrotron emission[J]. Physical Review Letters, 2016, 116(8): 083901. DOI: 10.1103/PhysRevLett.116.083901
    [4]
    VENKAT P, HOLKUNDKAR A R. Higher harmonics and attosecond pulse generation by laser induced Thomson scattering in atomic clusters[J]. Physical Review Accelerators and Beams, 2019, 22(8): 084401. DOI: 10.1103/PhysRevAccelBeams.22.084401
    [5]
    KOZÁK M, SCHÖNENBERGER N, HOMMELHOFF P. Ponderomotive generation and detection of attosecond free-electron pulse trains[J]. Physical Review Letters, 2018, 120(10): 103203. DOI: 10.1103/PhysRevLett.120.103203
    [6]
    HACK S, VARRÓ S, CZIRJÁK A. Carrier-envelope phase controlled isolated attosecond pulses in the nm wavelength range, based on coherent nonlinear Thomson-backscattering[J]. New Journal of Phy-sics, 2018, 20(7): 073043. DOI: 10.1088/1367-2630/aad2aa
    [7]
    FRYDRYCH S, VORBERGER J, HARTLEY N J, et al. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter[J]. Nature Communications, 2020, 11(1): 1-7. DOI: 10.1038/s41467-019-13993-7
    [8]
    KARBSTEIN F, MOSMAN E A. X-ray photon scattering at a focused high-intensity laser pulse[J]. Physical Review D, 2019, 100(3): 033002. DOI: 10.1103/PhysRevD.100.033002
    [9]
    RYKOVANOV S G, GEDDES C G R, SCHROEDER C B, et al. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping[J]. Physical Review Accelerators and Beams, 2016, 19(3): 30701. DOI: 10.1103/PhysRevAccelBeams.19.030701
    [10]
    CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluore-scence computed tomography based on a Thomson scattering light source: A Monte Carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. DOI: 10.1107/S1600577520003574
    [11]
    TAIRA Y, HAYAKAWA T, KATOH M. Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light[J]. Scientific Reports, 2017, 7(1): 1-9. DOI: 10.1038/s41598-016-0028-x
    [12]
    WANG Y, WANG C, ZHOU Q, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations[J]. Laser Physics, 2021, 31(1): 015301. DOI: 10.1088/1555-6611/abd3f7
    [13]
    VAIS O E, BYCHENKOV V Y. Nonlinear Thomson scattering of a tightly focused relativistically intense laser pulse by an ensemble of particles[J]. Quantum Electronics, 2020, 50(10): 922. DOI: 10.1070/QEL17344
    [14]
    YAN W, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. DOI: 10.1038/nphoton.2017.100
    [15]
    WANG Y, ZHOU Q, ZHUANG J, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses[J]. Optics Express, 2021, 29(14): 22636-22647. DOI: 10.1364/OE.426529
    [16]
    LI K, LI L, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J/OL]. (2019-02-26)[2021-12-26]. https://www.sciencedirect.com/science/article/pii/S0030402619302712.
    [17]
    WANG Y, WANG C, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2021, 18(1): 015303. DOI: 10.1088/1612-202X/abd170
    [18]
    严以律, 周希, 任山令, 等. 电子初始位置对高能电子空间辐射的影响[J]. 激光技术, 2022, 46(4): 556-560. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019

    YAN Y L, ZHOU X, REN Sh L, et al. Effect of initial position of electron on space radiation of high energy electron[J]. Laser Technology, 2022, 46(4): 556-560(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
    [19]
    YU P, LIN H, GU Z, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses[J]. Laser Physics, 2020, 30(4): 045301. DOI: 10.1088/1555-6611/ab74d4
    [20]
    WU Y, LIU Y, LIU D, et al. Effect of circularly polarized laser pulse beam waist radius on the dynamic and radiation characteristics of collided electrons[J]. Laser Physics, 2020, 30(11): 115301. DOI: 10.1088/1555-6611/abb6e5
    [21]
    SHI Y, WANG J, WU B, et al. Nonlinear Thomson scattering of a relativistic elliptically polarized laser with varied incident pulse widths[J]. Laser Physics, 2021, 31(10): 105401. DOI: 10.1088/1555-6611/ac250e

Catalog

    Article views (8) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return