Advanced Search
JIN Dongyue, HONG Fulin, ZHANG Wanrong, ZHANG Hongyuan, WANG Yihua, WANG Huanzhe, WANG Kaiyao, GUAN Baolu. Advances in thermal design of vertical cavity surface emitting laser array[J]. LASER TECHNOLOGY, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002
Citation: JIN Dongyue, HONG Fulin, ZHANG Wanrong, ZHANG Hongyuan, WANG Yihua, WANG Huanzhe, WANG Kaiyao, GUAN Baolu. Advances in thermal design of vertical cavity surface emitting laser array[J]. LASER TECHNOLOGY, 2024, 48(6): 777-789. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.002

Advances in thermal design of vertical cavity surface emitting laser array

More Information
  • Received Date: January 03, 2024
  • Revised Date: March 11, 2024
  • Published Date: November 24, 2024
  • Vertical-cavity surface-emitting laser (VCSEL) usually adopt a 2-D array structure with small-sized light-emitting cells in parallel to increase the output optical power and to improve the laser beam quality. However, with the down scaling of the chip size and the increasing of the array integration, the self-heating effect caused by the power dissipation of the VCSEL cell and the thermal coupling effect among VCSEL cells will lead to a sharp increase in the junction temperature of the VCSEL array. Due to the effect of thermal-opto-electro feedback, the optical performance and thermal reliability of the VCSEL array will be limited seriously, which propose urgent requirements for the thermal design of the VCSEL array. Based on the heat generation mechanism of VSCEL array, latest development of VCSEL array thermal design was reviewed in detail from the aspects of thermal-opto-electro modeling and thermal design methodology. The development trend of thermal design in VCSEL array was also prospected.
  • [1]
    SODA H, IGA K I, KITAHARA C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330. DOI: 10.1143/JJAP.18.2329
    [2]
    IGA K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. DOI: 10.7567/JJAP.57.08PA01
    [3]
    KASUKAWA A, TAKAKI K, IMAI S, et al. Enabling VCSEL technology for "Green" optical interconnect in HPC and data centers[C]//IEEE Photonic Society 24th Annual Meeting. New York, USA: IEEE Press, 2011: 393-394.
    [4]
    WANG C C, LI Ch, DAI J J, et al. Thermal analysis of VCSEL arrays based on first principle theory and finite element method[J]. Optical and Quantum Electronics, 2019, 51: 196. DOI: 10.1007/s11082-019-1909-6
    [5]
    HONG K B, HUANG W T, CHUNG H Ch, et al. High-speed and high-power 940 nm flip-chip VCSEL array for LiDAR application[J]. Crystals, 2021, 11(10): 1237. DOI: 10.3390/cryst11101237
    [6]
    CHENG Ch S, SHEN Ch Ch, KAO H Y, et al. 850/940 nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005.
    [7]
    徐一帆, 施阳杰, 邵景珍, 等. 大功率半导体激光器的高精度脉冲电源设计[J]. 激光技术, 2023, 47(1): 108-114. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017

    XU Y F, SHI Y J, SHAO J Zh, et al. Design of high-precision pulse power supply for high-power semiconductor laser[J]. Laser Technology, 2023, 47(1): 108-114(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.017
    [8]
    胡烜瑜, 郑皞翾, 郑毅, 等. 基于合束的500 W蓝光半导体激光模块化研究[J]. 激光技术, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003

    HU X Y, ZHENG H X, ZHENG Y, et al. Research on modularization of 500 W bule semiconductor laser based on beam combination[J]. Laser Technology, 2024, 48(4): 470-476(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003
    [9]
    TIBALDI A, BERTAZZI F, GOANO M, et al. VENUS: A vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1500212.
    [10]
    GREENBERG K, SUMMERS J, FARZANEH M, et al. Spatially-resolved thermal coupling in VCSEL arrays using thermoreflectance microscopy[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, UAS: Optica Publishing Group, 2008: 1-2.
    [11]
    WIPIEJEWSKI T, YOUNG D B, THIBEAULT B J, et al. Thermal crosstalk in 4×4 vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 1996, 8(8): 980-982. DOI: 10.1109/68.508710
    [12]
    GREENBERG K, SUMMERS J, HUDGINGS J. Thermal coupling in vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 2010, 22(9): 655-657. DOI: 10.1109/LPT.2010.2043728
    [13]
    PAN G Zh, XUN M, ZHAO Zh Zh, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345. DOI: 10.1109/LED.2021.3098899
    [14]
    JIN D Y, ZHOU Y X, GUAN B L, et al. Thermally induced current bifurcation and drastically collapse of output optical power in VCSEL arrays[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6415-6420. DOI: 10.1109/TED.2023.3326117
    [15]
    JIN D Y, YANG Sh M, ZHANG F, et al. Thermal design of VCSEL arrays for optical output power improvement[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3761-3767. DOI: 10.1109/TED.2022.3177164
    [16]
    BAVEJA P, KOGEL B, WESTBERGH P, et al. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling[J]. Optics Express, 2011, 19(16): 15490-15505. DOI: 10.1364/OE.19.015490
    [17]
    COLDREN L, CORZINE S, MASHANOVITCH M. Diode lasers and photonic integrated circuits[M]. New York, USA: John Wiley & Sons Press, 2012: 60-64.
    [18]
    SIMONM S. Semiconductor devices: Physics and technology[M]. 3rd ed. New York, USA: John Wiley & Sons Press, 2008: 82-120.
    [19]
    BOER K W. The physics of solar cells[J]. Journal of Applied Physics, 1979, 50(8): 5356-5370. DOI: 10.1063/1.326636
    [20]
    WILMSEN C, TEMKIN H, COLDREN L. Vertical-cavity surface-emitting lasers: Design, fabrication, characterization, and applications[M]. Cambridge, UK: Cambridge University Press, 2001: 55-60.
    [21]
    MENA P V, MORIKUNI J J, KANG S M, et al. A simple rate-equation-based thermal VCSEL model[J]. IEEE Journal of Lightwave Technology, 1999, 17(5): 865-872. DOI: 10.1109/50.762905
    [22]
    MENA P V, MORIKUNI J J, KANG S M, et al. A comprehensive circuit-level model of vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 1999, 17(12): 2612-2632. DOI: 10.1109/50.809684
    [23]
    SOOUDI E, AHMADI V, SOROOSH M. A versatile HSPICE electro-opto-thermal circuit model for vertical-cavity surface-emitting lasers[C]//2006 IEEE International Conference on Semiconductor Electronics. New York, USA: IEEE Press, 2006: 866-870.
    [24]
    ENTEZAM S, ZARIFKAR A, SHEIKHI M H. Thermal equivalent circuit model for coupled-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 2015, 51(4): 2400108.
    [25]
    DESGREYS P, KARRAY M, CHARLOT J, et al. Opto-electro-thermal model of a VCSEL array using VHDL-AMS[C]//Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation. New York, USA: IEEE Press, 2002: 123-126.
    [26]
    CHANG Q, SHI X Zh, WANG G F, et al. A new circuit-level thermal model of vertical-cavity surface-emitting lasers[C]//2009 Second International Conference on Intelligent Computation Technology and Automation. New York, USA: IEEE Press, 2009: 937-940.
    [27]
    NAKWASKI W, OSINSKI M. Thermal properties of etched-well surface-emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1391-1401. DOI: 10.1109/3.89956
    [28]
    NAKWASI W, OSINSKI M. On the thermal resistance of vertical-cavity surface emitting lasers[J]. Optical and Quantum Electronics, 1997, 29(9): 883-892. DOI: 10.1023/A:1018525616214
    [29]
    MIEYEVILLE F, JACQUEMOD G, GAFFIOT F, et al. A behavioural opto-electro-thermal VCSEL model for simulation of optical links[J]. Sensors and Actuators, 2001, A88(3): 209-219.
    [30]
    BAVEJA P P, KOGEL B, WESTBERGH P, et al. Impact of device parameters on thermal performance of high-speed oxide-confined 850 nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2012, 48(1): 17-26. DOI: 10.1109/JQE.2011.2176554
    [31]
    OSINSKI M, NAKWASKI W. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 681-696. DOI: 10.1109/2944.401258
    [32]
    BOIKO D L, GUERRERO G, KAPON E. Thermoelectrical model for vertical cavity surface emitting lasers and arrays[J]. Journal of Applied Physics, 2006, 100(10): 103102. DOI: 10.1063/1.2386941
    [33]
    CHOI J H, WANG L, BI H, et al. Effects of thermal-via structures on thin-film VCSELs for fully embedded board-level optical interconnection system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1060-1065. DOI: 10.1109/JSTQE.2006.881903
    [34]
    LEE H K, SONG Y M, LEE Y T, et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation[J]. Solid-State Electronics, 2009, 53(10): 1086-1091. DOI: 10.1016/j.sse.2009.06.005
    [35]
    JEONG H J, CHOQUETTE K. Thermal modeling of transferred VCSELs[C]//2013 IEEE Photonics Conference. New York, USA: IEEE Press, 2013: 248-249.
    [36]
    UEMURA T, NAGASHIMA K, NISHIMURA N, et al. Thermal design of 28 Gb/s×24-channel CDR-integrated VCSEL-based transceiver module[C]//2016 IEEE CPMT Symposium Japan. New York, USA: IEEE Press, 2016: 79-82.
    [37]
    FORMAN C, LEE S, YOUNG E, et al. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact[J]. Applied Physics Letters, 2018, 112(11): 111106. DOI: 10.1063/1.5007746
    [38]
    ZHANG J W, NING Y Q, ZHANG X, et al. Improved performances of 850 nm vertical cavity surface emitting lasers utilizing the self-planar mesa structure[J]. Optics & Laser Technology, 2014, 56(5): 343-347.
    [39]
    MEI Y, WENG G E, ZHANG B P, et al. Quantum dot vertical-cavity surface-emitting lasers covering the green gap[J]. Light: Science & Applications, 2017, 6(1): e16199.
    [40]
    FANG T X, CUI B F, HAO Sh, et al. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. Journal of Semiconductors, 2018, 39(2): 024001. DOI: 10.1088/1674-4926/39/2/024001
    [41]
    WANG J H, SAVIDIS L, FRIEDMAN E. Thermal analysis of oxide-confined VCSEL arrays[J]. Microelectronics Journal, 2011, 42(5): 820-825. DOI: 10.1016/j.mejo.2010.11.005
    [42]
    XUN M, XU Ch, XIE Y Y, et al. Modal properties of 2-D implant-defined coherently coupled vertical-cavity surface-emitting laser array[J]. IEEE Journal of Quantum Electronics, 2015, 51(1): 2600106.
    [43]
    XUN M, PAN G Zh, ZHAO Zh Zh, et al. Analysis of thermal properties of 940 nm vertical cavity surface emitting laser arrays[J]. IEEE Transactions on Electron Devices, 2020, 68(1): 158-163.
    [44]
    史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器列阵[J]. 光学精密工程, 2012, 20(1): 17-23.

    SHI J J, QIN L, NING Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 2012, 20(1): 17-23 (in Chinese).
    [45]
    LI W, QI Y X, LIU S P, MA X Y. High power density and temperature stable vertical-cavity surface-emitting laser with a ring close packing structure[J]. Optics and Laser Technology, 2020, 132(3): 106510.
    [46]
    HAGHIGHI N, MOSER P, ZORN M, et al. 19-element 2D top-emitting VCSEL arrays[J]. Journal of Lightwave Technology, 2021, 39(1): 186-192. DOI: 10.1109/JLT.2020.3023709
    [47]
    HEUSER T, PFLUGER M, FISCHER I, et al. Developing a photonic hardware platform for brain-inspired computing based on 5×5 VCSEL arrays[J]. Journal of Physics: Photonics, 2020, 2(4): 044002. DOI: 10.1088/2515-7647/aba671
    [48]
    CHOQUETTE K D, SCHNEIDER R P, LEAR K L, et al. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation[J]. Electronics Letters, 1994, 30(24): 2043-2044. DOI: 10.1049/el:19941421
    [49]
    ANGELOS C, HINCKLEY S, MICHALZIK R, et al. Simulation of current spreading in bottom-emitting vertical cavity surface emitting lasers for high-power operation[J]. Proceedings of the SPIE, 2004, 5277: 261-272. DOI: 10.1117/12.522899
    [50]
    佟存柱, 韩勤, 彭红玲, 等. 氧化限制型垂直腔面发射激光器串联电阻分析[J]. 半导体学报, 2005, 15(7): 1459-1463.

    TONG C Zh, HAN Q, PENG H L, et al. Annlysis of series sesistance of sxide-aperture confined vertical-cavity surface-emitting laser[J]. Chinese Journal of Semiconductors, 2005, 15(7): 1459-1463(in Chinese).
    [51]
    XU D W, YOON S F, TONG C Z, et al. Influence of oxide aperture on the properties of 1.3 μm InAs-GaAs quantum-dot VCSELs[C]//2008 IEEE Photonics Global@Singapore. New York, USA: IEEE Press, 2008: 1-3.
    [52]
    刘迪, 宁永强, 秦莉, 等. 氧化孔径对高功率垂直腔面发射激光器温升的影响[J]. 中国激光, 2012, 39(5): 0502005.

    LIU D, NING Y Q, QIN L, et al. Effect of oxide aperture on temperature rise in high power vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502005(in Chinese).
    [53]
    PENG Ch Y, TSAO K, CHENG H T, et al. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser[J]. Optics Express, 2020, 28(21): 30748-30759. DOI: 10.1364/OE.397878
    [54]
    LIAO W Y, LI J, LI Ch Ch, et al. Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure[J]. Chinese Physics, 2020, B29(2): 024201.
    [55]
    BRAVE A, HEGBLOM E. Variable emission area design for a vertical-cavity surface-emitting laser array: US11482839B2[P]. 2022-12-25.
    [56]
    CZYSZANOWSKI T, SARZALA R, DEMS M, et al. Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1702010.
    [57]
    ZHONG Ch Y, ZHANG X, LIU D, et al. Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution[J]. Chinese Physics, 2017, B26(6): 064204.
    [58]
    ZHONG Ch Y, ZHANG X, HOFMANN W, et al. Low thermal crosstalk 808 nm VCSEL arrays with nonlinear mesa configuration[J]. IEEE Photonics Journal, 2018, 10(6): 1504608.
    [59]
    LIU Y Y, HUANG Y W, ZHONG Ch Y, et al. VCSEL array thermal-distribution optimized by mesas rearrangement[J]. Optik, 2019, 186(6): 443-448.
    [60]
    QI Y X, LI W, LIU S P, et al. Optimized arrangement of vertical cavity surface emitting laser arrays to improve thermal characteristics[J]. Journal of Applied Physics, 2019, 126(19): 191101.
    [61]
    NING Y, JIE Y, YE T. Thermal chips layout method in MCM based on an improved particle swarm algorithm[C]//2019 Chinese Control and Decision Conference (CCDC). New York, USA: IEEE Press, 2019: 537-541.
    [62]
    PU G Q, YI L L, ZHANG L, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2019, 32(1): 7-10.
  • Related Articles

    [1]LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. LASER TECHNOLOGY, 2023, 47(4): 558-564. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.018
    [2]SONG Xinhua, XIU Tengfei, JIN Xiangzhong, YUAN Jiang, SONG Bin. Numerical simulation of 3-D flow field on laser-assisted heating friction stir welding of steel[J]. LASER TECHNOLOGY, 2016, 40(3): 353-357. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.011
    [3]XU Cheng-wei, YAO Mei, XU Zhen-ling, ZHANG Wen-pan, HU Xin, WANG Jun, LIU Yan-fang. Simulation and measurement of scattering laser energy distribution in extinctive chambers[J]. LASER TECHNOLOGY, 2012, 36(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2012.01.037
    [4]CHEN Gen-yu, ZHANG Jun, ZHANG Yi, ZHAO Zhi. Study on method of measuring temperature distribution of plasma[J]. LASER TECHNOLOGY, 2008, 32(2): 137-139.
    [5]GUO Yun-xiao, GONG Ma-li, XUE Hai-zhong, LI Chen, YAN Ping, LIU Qiang, CHEN Gang. Temperature analysis with nonuniform heat generation in the side-pumping laser rod[J]. LASER TECHNOLOGY, 2007, 31(3): 238-241.
    [6]CHEN Ji-xin, SUI Zhan, Cheng Fu-shen, LIU Zhi-qiang. Thermal effect of Yb3+-doped double clad fiber laser[J]. LASER TECHNOLOGY, 2006, 30(3): 268-270.
    [7]Fang Aiping, Lou Qihong, Dong Jingxing, Wei Yunron, Li Tiejun. Theoretical study on the temperature characteristics of LD side-pumped Nd:YAG laser slab[J]. LASER TECHNOLOGY, 2003, 27(3): 248-250.
    [8]Shen Hongyuan, Zhang Ge, Huang Chenghui, Wei Min, Chen Zhenqiang. Temperature distribution of monocline laser crystal in operation process[J]. LASER TECHNOLOGY, 2002, 26(4): 244-245,249.
    [9]Zhai Qun, Lü Baida, Yang Chenglong. Two dimensional temperature and stress distributions in a diode side pumped slab laser medium[J]. LASER TECHNOLOGY, 1998, 22(4): 231-235.
    [10]Zhao Jianrong, Li Chunjin, Yang Shirun. Measurements of temperature distribution in a counterflow diffusion flame by USED CARS[J]. LASER TECHNOLOGY, 1997, 21(4): 218-222.

Catalog

    Article views (46) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return