HTML
-
实验中在三轴数控加工中心上集成旋转工作台,在结构上形成“3+2”双工作台回转型五轴联动数控加工中心,如图 1a所示。在三轴数控加工中心z轴伺服系统上集成激光近净成形装置,在功能上实现零件的增材制造,如图 1b所示。
-
在数控编程中,将CAM软件生成的刀位轨迹计算过程称为前置处理,前置处理以工件坐标系为基准,不考虑具体机床的空间结构、类型以及数控系统,前置处理生成的刀位数据文件不能直接被机床使用。后处理就是根据具体机床控制指令格式、运动结构及其运动空间的范围等,将前置处理生成的刀位数据文件转换成适合于机床各轴的运动数据,后处理流程如图 2所示。
实验设备选用HNC-818B五轴数控系统,由于其是“3+2”双工作台回转型结构,市面上无成熟的后处理,亟需开发一款适用于该设备的五轴联动后处理系统。基于UG CAM软件的后处理构造器来构造“3+2”双工作台回转型后处理系统,经过反复实验论证:HNC-818B五轴数控系统与fanuc_6M后处理系统兼容性最好。因此,以fanuc_6M后处理系统为基础,开发适用于本实验设备类型的后处理。
-
通过UG CAM的后处理构造器构建基于“3+2”双工作台回转型五轴联动数控加工设备后处理,部分定义、修改的代码如表 1所示。
symbol function G00 motion rapid G01 motion linear G04 delay (0.1s~9999.9s) G17 plane xy G41 tool offset right G43 tool length adjust plus M03 spindle clockwise rotation M05 spindle off V the 4th axis, plane of rotation yz, -110°~ 110° U the 5th axis, plane of rotation xy, -360°~ 360° Table 1. Post-process code description
后处理验证实验以某型号奖杯和叶片为加工案例,通过UG CAD软件构建3维模型,UG CAM编排加工工序,“3+2”双工作台回转型后处理导出程序进行加工,验证该后处理的功能性和适用性。奖杯模型、加工成型件如图 3所示,部分CAM仿真加工轨迹如图 4所示,加工工序如表 2所示。表中,D是直径,R是半径。
process tool specification driving method feed rate/(mm·min-1) spindle speed/(r·min-1) cavity milling cutter D=10mm automation 500 3000 cavity milling cutter D=10mm automation 500 3000 contour area milling ball cutter R=5mm area milling 600 3500 contour area milling ball cutter R=5mm boundary 500 3500 contour area milling ball cutter R=5mm boundary 500 3500 variable contour milling ball cutter R=2mm curved surface 1500 4500 variable contour milling ball cutter R=5mm curved surface 1200 3500 variable contour milling ball cutter R=5mm curved surface 1200 3500 variable contour milling ball cutter R=2mm curved surface 1500 4500 Table 2. Procedure of trophy processing
叶片模型、加工成型件如图 5所示,加工工序如表 3所示,部分CAM仿真加工轨迹如图 6所示。
process tool specification driving method spindle speed/(r·min-1) feed speed/(mm·min-1) cavity milling customized follow around 2600 400 cavity milling customized follow around 2600 400 cavity milling cutter D=14mm follow around 3200 350 cavity milling cutter D=4mm follow around 4200 400 contour area milling ball cutter R=2mm aera milling 4200 600 variable contour milling ball cutter R=2mm curved surface 4200 1200 cavity milling cutter D=4mm follow around 4200 300 Table 3. Blade processing process
通过FARO激光扫描仪对加工的叶片进行扫描,对比原始3维模型的数据,尺寸误差如图 7所示。误差原因初步的分析结果是:未对加工刀位数据进行补偿处理。
-
由1.3节可知,该“3+2”双工作台回转型五轴联动数控加工设备后处理导出程序只能进行减材加工,无法实现增材制造的功能。因此,还需在后处理器中定义增材制造代码,部分代码如表 4所示。
symbol function S1 laser power, setting range 50W~950W S2 powder feeder, set value range 280g/min~900g/min M83 1# powder feeder on M84 2# powder feeder on M85 powder feeder off M86 laser head goes down to the bottom M87 laser head goes up to the top M88 laser on M89 laser off Table 4. Laser additive manufacturing code description
基于表 4的代码功能,通过UG CAD设计某型号机匣3维模型,如图 8a所示。目前,该型号机匣通过3种方式成型:(1)铸模成型,机匣整体结构为薄壁件,在熔铸过程中因溶液流动慢、热应力分布不均匀的问题易造成缩孔、微裂纹等缺陷,影响产品的力学性能和表面质量;(2)通过五轴联动铣削加工,在加工过程中易出现零件变形、加工干涉的现象,由于是减材加工,成品质量只占毛坯料质量小于10%,造成材料的极大浪费;(3)通过单一的增材制造模式进行加工,其成型件不可避免的需要辅助以支撑,这些支撑需要通过磨抛、铣削等方式去除,造成加工周期的延长和对零件表面的二次破坏[18-20]。
通过五轴联动与激光近净成形的增减材混合制造技术加工该型号机匣,能很好地解决以上3种成型模式中的问题。基于增减材混合制造的加工理念,分析该型号机匣结构可知:圆环与基材结合面是曲面结构,因此,圆环的增减材制造是实现机匣混合制造的最关键工艺,如图 8b所示。
机匣部分增减材混合制造加工工艺参数如表 5、表 6所示。其中,圆环在增材制造过程中,初期与基材结合面用800W功率,待增材层厚至4mm~5mm后,改换600W功率。
tool specification power/
Wroad width/
mmthickness/
mmprocetive
gascoaxial nozzle 800 or 600 0.7~1.2 1~1.5 N2 Table 5. Additive paraments of hybrid manufacture
tool specification cutter D=6mm or ball cutter D=6mm process variable counter milling driving method curved surface cutting thickness 0.05mm rotation speed 3000r/min feed rate 500mm/min Table 6. Additive paraments of hybrid manufacture
由添加增材制造代码的“3+2”双工作台型五轴联动后处理导出加工程序,进行机匣的增减材混合制造,以验证该后处理系统的功能性和适用性,如图 9所示。其中,圆环混合制造工序为:(1)基于激光近净成形技术,增材制造与基材接合面的圆环,如图 9a所示;(2)基于五轴联动数控加工技术,减材制造与基材接合面的圆环,如图 9b所示;(3)基于激光近净成形技术,增材制造圆环至指定高度,如图 9c所示;(4)基于五轴联动数控加工技术,减材制造圆环至指定高度;(5)重复工序(1)~工序(4), 阵列增材、减材加工圆环,如图 9d所示。
通过加工效果可知,该增减材混合制造后处理在功能上是可行的。