Advanced Search
YANG Bo, YUAN Yibang, YANG Jianming. Hybrid manufacturing study based on five-axis linkage and LENS[J]. LASER TECHNOLOGY, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019
Citation: YANG Bo, YUAN Yibang, YANG Jianming. Hybrid manufacturing study based on five-axis linkage and LENS[J]. LASER TECHNOLOGY, 2022, 46(3): 415-421. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.019

Hybrid manufacturing study based on five-axis linkage and LENS

More Information
  • Received Date: April 08, 2021
  • Revised Date: July 21, 2021
  • Published Date: May 24, 2022
  • In order to make up for the limitations of manufacturing technology, laser engineered near shaping (LENS) device was integrated on a five-axis linkage computerized numerical control (CNC) machine by applying the technology of adding and subtracting materials, which forms an equipment realizing additive and subtractive machining structurally; UG post-processing builder was used to develop a post-processing machining system of additive and subtractive materials, which realizes parts' hybrid manufacturing functionally. The results show that hybrid manufacturing can achieve one-time forming for complex metal parts, and reduce machining errors and inefficiencies caused by multiple clamping. Compared with additive or subtractive processing mode, the product yield rate is increased more than 20%, processing time is shortened more than 45%, supporting amount is reduced more than 30%, respectively. Especially for parts with a structure of closed internal flow channel, the surface accuracy of the internal flow channel can reach 0.6μm by using hybrid manufacturing method, which effectively extends parts' service life. Hybrid manufacturing technology can realize processing with weak support, no support, no interference, high-precision and high-efficiency. This research provides reference for the process plan, manufacturing mode, and application expansion of laser hybrid manufacturing.
  • [1]
    ZONG X W, XIONG C, ZHANG B, et al. Summary of research on manufacturing complex metal parts based on rapid prototyping techno-logy[J]. Hot Working Technology, 2019, 48(1): 5-8 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SJGY201901002.htm
    [2]
    XU X P, LI M L, LIU Y Y, et al. Crack analysis of laser engineered net shaping GH99 alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(2): 1-5 (in Chinese). https://www.researchgate.net/publication/333558205_Crack_analysis_of_laser_engineered_net_shaping_GH99_alloy
    [3]
    MIAO P. Effect of deposition efficiency on microstructure and property of 316L stainless steel fabricated by laser engineered net shaping[D]. Dalian: Dalian University of Technology, 2018: 7-21 (in Chinese).
    [4]
    LI H B. Research on five-axis linkage dual NURBS interpolation technology[D]. Nanchang: Nanchang Hangkong University, 2019: 8-13(in Chinese).
    [5]
    ZHANG Ch Y, CHEN X Sh, SUN X T. The development situation of metal 3-D printing manufacturing technology[J]. Laser Technology, 2020, 44(3): 393-396(in Chinese).
    [6]
    HE L. The study on semi-solid metal extrusion deposition molding technology based on five-axis linkage CNC workbench[D]. Wuhan: Huazhong University of Science and Technology, 2015: 11-27 (in Chinese).
    [7]
    CAO Ch Ch, GUO P Y, YANG D K. Mechanical structure design of teaching five-axis CNC milling machine based on UG[J]. Agricultu-ral Mechanization Using & Maintenance, 2019, 7: 6-7 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-NJWX201907003.htm
    [8]
    DING H Y, HE J Ch. Research progress in additive manufacturing of high entropy alloys[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(6): 36-39 (in Chinese). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=HDCB202006007&dbcode=CJFD&dbname=CJFD2020&v=
    [9]
    ZHAO X K. Research progress of additive manufacturing technology on nickel-titanium memory alloy and its application prospects in aviation[J]. Aeronautical Manufacturing Technology, 2016, 12: 34-40 (in Chinese).
    [10]
    ZHONG M L, NING G Q, LIU W J. Research and development on laser direct manufacturing metallic components[J]. Laser Technology, 2002, 26(5): 388-391(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200205021.htm
    [11]
    DOÑATE-BUENDÍA C, GU D D, SCHMIDT M, et al. On the selection and design of powder materials for laser additive manufacturing[J]. Materials & Design, 2021, 204: 109653. https://spider.doc88.com/p-38273066446175.html
    [12]
    GAO M Q, ZHAO Y H, ZHAO J B, et al. Research status and development of additive/subtractive hybrid manufacturing (A/SHM) [J]. Vacuum, 2019, 56(6): 68-71(in Chinese).
    [13]
    HUANG X, ZHANG J Ch, LIAN G F, et al. Research status and application of extreme high speed cladding[J]. Machine Tool & Hydraulics, 2021, 49(6): 151-155(in Chinese). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=JCYY202106035&dbcode=CJFD&dbname=CJFD2021&v=
    [14]
    SHI Y, WANG L F, SHI Q, et al. The electrical control systems of high-performance selective laser melting additive manufacturing equipment[J]. Manufacturing Automation, 2019, 43(3): 21-22(in Chinese).
    [15]
    GUO Ch H, WANG Z Ch, YAN J Y, et al. Research progress in additive-subtractive hybrid manufacturing[J]. Chinese Journal of Engineering, 2020, 42(5): 540-548(in Chinese).
    [16]
    LI A, LIU X F, YU B, et al. Key factors and developmental directions with regard to metal additive manufacturing[J]. Chinese Journal of Engineering, 2019, 41(2): 159-173(in Chinese). https://www.researchgate.net/publication/333043071_Key_factors_and_developmental_directions_with_regard_to_metal_additive_manufacturing
    [17]
    YAO R B, YANG L X, DAI L L. Study on hybrid process planning of additive and subtractive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(7): 1076-1081(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JXKX201807015.htm
    [18]
    BROWN D, LI C, LIU Z Y, et al. Surface integrity of Inconel718 by hybrid selective laser melting and milling[J]. Virtual and Physical Prototyping, 2018, 13(1): 27-30. DOI: 10.1080/17452759.2017.1392681
    [19]
    SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5): 315-316. DOI: 10.1080/09506608.2015.1116649
    [20]
    SING S L, AN J, YEONG W Y, et al. Laser and electron-beam powder bed additive manufacturing of metallic implants: A review on processes, materials and designs[J]. Journal of Orthopaedic Research, 2016, 34(3): 369-370. DOI: 10.1002/jor.23075
    [21]
    ZHANG J T, ZHANG W, LI Y J, et al. Laser deposition additive-subtractive hybrid manufacturing process for stainless steel powder based on DMG MORI LASERTEC 653D[J]. Materials Science and Engineering Powder Metallurgy, 2018, 23(4): 368-369(in Chinese).
  • Cited by

    Periodical cited type(14)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 赵欣,徐强,黄天明,高冰,熊礼,黄延伟. 不锈钢基材表面激光熔覆钴基合金涂层组织对比研究. 铸造. 2024(07): 982-989 .
    3. 于海峰,陈翔,郭海华. 基于TRIZ理论的刀具梯度熔覆WC涂层的修复工艺改进. 金属加工(冷加工). 2024(08): 58-61 .
    4. 郭海华,陈翔,李金华,姚芳萍,王天赐. M2高速钢表面激光熔覆WC-12Co梯度涂层的制备工艺与实验研究. 制造技术与机床. 2024(09): 71-78 .
    5. 陈颖,黄海鸿,徐鸿蒙,刘志峰. 基于熔池热历史的陶瓷增强金属基复材激光定向能量沉积质量实时监测方法. 计算机集成制造系统. 2024(11): 3943-3953 .
    6. 李艳,王晨旭,江怡蔚,何静,唐冉,刘生龙,琚中毅,唐文健,冷静健,常发成,刘博鑫,刘秀清,王云龙. 65Mn钢表面激光熔覆Fe60-WC复合涂层组织及性能研究. 应用激光. 2024(10): 31-39 .
    7. 徐国辉,李喜春,董彬,于世奇,王林,徐存鑫,郑希,叶晓慧. 激光制备新型石墨烯/铜基复合电触头. 激光技术. 2023(02): 225-232 . 本站查看
    8. 黄江,朱志凯,李凯玥,师文庆,吴香林,谢玉萍. 304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究. 应用激光. 2023(06): 29-35 .
    9. 梁飞龙,师文庆,李凯玥,朱志凯,吴腾. Cu质量分数对激光熔覆Ni-Cu-WC涂层组织和性能的影响. 激光技术. 2023(05): 653-658 . 本站查看
    10. 王杉杉,师文庆,吴腾,程才,朱志凯,陈熙淼,谢林圯,何宽芳. WC质量分数对激光熔覆Ni基涂层组织和性能的影响. 激光技术. 2023(04): 463-468 . 本站查看
    11. 朱志凯,李凯玥,黄江,师文庆,谢玉萍,何敏仪,刘文娟,王杉杉. WC强化Fe60激光熔覆层研究. 应用激光. 2023(08): 10-17 .
    12. 杨倩倩,刘源,叶晓慧,强豪,邵星海,曹磊. 激光制备新型石墨烯/银基触头及其性能研究. 激光技术. 2023(06): 766-771 . 本站查看
    13. 贺敏波,任伟艳,杨雨川,邬志华,胡月宏. 掺杂相对ZrB_2陶瓷涂层抗激光烧蚀性能的影响. 应用光学. 2023(06): 1177-1184 .
    14. 张理,毕贵军,曹立超,常云龙. 激光熔覆60%WC-Ni涂层参数及性能研究. 自动化与信息工程. 2022(02): 1-7+22 .

    Other cited types(8)

Catalog

    Article views (11) PDF downloads (7) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return