Advanced Search
XU Guohui, LI Xichun, DONG Bin, YU Shiqi, WANG Lin, XU Cunxin, ZHENG Xi, YE Xiaohui. A novel graphene/Cu hybrid electrical contact fabrication by laser processing[J]. LASER TECHNOLOGY, 2023, 47(2): 225-232. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.011
Citation: XU Guohui, LI Xichun, DONG Bin, YU Shiqi, WANG Lin, XU Cunxin, ZHENG Xi, YE Xiaohui. A novel graphene/Cu hybrid electrical contact fabrication by laser processing[J]. LASER TECHNOLOGY, 2023, 47(2): 225-232. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.011

A novel graphene/Cu hybrid electrical contact fabrication by laser processing

More Information
  • Received Date: February 24, 2022
  • Revised Date: April 27, 2022
  • Published Date: March 24, 2023
  • In order to improve the performance of electrical equipment, it is urgent to develop new high performance contact materials for electric power system. A novel preparation method of graphene/copper composite contacts was presented in this paper. The Ni-Cu alloy transition layer was prepared on the surface of copper (mass fraction was 0.999) by plasma-assisted processing. On such a transition layer, the graphene surface film was prepared by a high-powered continuous-wave laser in situ, covering the surface of copper as an independent coating to resist the damage of contact material. The plasma-assisted processing and laser processing processes of graphene composite contact materials were explored. The results show that the graphene/copper-based contact materials have excellent electrical characteristics, the resistance is similar to red copper, hardness is 1.8 times that of red copper, friction coefficient is only 0.06. This work can provide a new solution and a new material system for electrical materials.
  • [1]
    郑阳升, 郑顺奇, 贺勇, 等. 铜基电触头材料的研究现状与发展趋势[J]. 电子工业专用设备, 2020, 49(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS202006001.htm

    ZHENG Y Sh, ZHENG Sh Q, HE Y, et al. Research status and development trend of copper-based electrical contact materials[J]. Equipment for Electronic Products Manufacturing, 2020, 49(6): 1-6 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGZS202006001.htm
    [2]
    吴学亮. 高压铜触头触指毛刺去除工艺及实验研究[D]. 西安: 西安理工大学, 2017: 16-25.

    WU X L. Research on deburring process and experimental study of high-boltage button contact[D]. Xi'an: Xi'an University of Technology, 2017: 16-25 (in Chinese).
    [3]
    张凯强. 铜基合金触头材料的制备及波形法电弧特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 12-17.

    ZHANG K Q. Study of fabrication and arc characteristic of copper-based contact materials bywaveformtest[D]. Harbin: Harbin Institute of Technology, 2012: 12-17 (in Chinese).
    [4]
    张晓辉. 弥散铜/(W, Cr)电触头材料的组织与性能[D]. 洛阳: 河南科技大学, 2020: 20-36.

    ZHANG X H. Microstructure and properties of the Al2O3-Cu/ (W, Cr) electrical contact materials[D]. Luoyang: Henan University of Science and Technology, 2020: 20-36 (in Chinese).
    [5]
    YANG L J, DING D, YUAN Y, et al. Influence of contact layer on the sulphur corrosion of copper conductors in power transformers[J]. High Voltage, 2022, 7(1): 176-184. DOI: 10.1049/hve2.12088
    [6]
    BIELE L, SCHAAF P, SCHMID F. Method for contact resistance determination of copper during fast temperature changes[J]. Journal of Materials Science, 2021, 56(5): 3827-3845. DOI: 10.1007/s10853-020-05490-w
    [7]
    MAO X Y, ZHU L Q, LIU H C, et al. Cu/graphene composite coatings electrodeposited in a directly dispersed graphene solution after electrochemical exfoliation with enhanced oxidation resistance[J]. Journal of Alloys and Compounds, 2021, 882: 160706. DOI: 10.1016/j.jallcom.2021.160706
    [8]
    ZUO T T, XUE J L, RU Y D, et al. The improved softening resistance and high electrical conductivity of the 3D graphene enhanced copper-based composite fabricated by liquid carbon source[J]. Materials Letters, 2021, 283(14): 688-699.
    [9]
    ZHANG Zh G, LU X T, XU J R, et al. Characterization and tribological properties of graphene/copper composites fabricated by electroless plating and powder metallurgy[J]. Acta Metallurgica Sinica (English Letters), 2022, 33(7): 903-912.
    [10]
    CUI L, LUO R, WANG L, et al. Novel copper-impregnated carbon strip for sliding contact materials[J]. Journal of Alloys and Compounds, 2017, 735: 1846-1853.
    [11]
    WU M L, HOU B S, SHU S C, et al. High oxidation resistance of cvd graphene-reinforced copper matrix composites[J]. Nanomaterials, 2019, 9(4): 498-504. DOI: 10.3390/nano9040498
    [12]
    刘壮, 方菊, 李元成, 等. 飞秒激光加工SiC/SiC复合材料厚板的孔型特征研究[J]. 激光技术, 2022, 46(6): 736-741. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.004

    LIU Zh, FANG J, LI Y Ch, et al. Pore characteristics of SiC/SiC composite thick plate machined by femtosecond laser[J]. Laser Technology, 2022, 46(6): 736-741 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.06.004
    [13]
    李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008

    LI L Ch, WEI X. Influence of WC on crack formation mechanism of laser cladding composite coating[J]. Laser Technology, 2023, 47(1): 52-58 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
    [14]
    KOHLER R, TREDICUCCI A, BELTRAM F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159. DOI: 10.1038/417156a
    [15]
    YE X H, LONG J Y, LIN Zh, et al. Direct laser fabrication of large-area and patterned graphene at room temperature[J]. Carbon, 2014, 68: 784-790. DOI: 10.1016/j.carbon.2013.11.069
    [16]
    叶晓慧. 激光快速原位制备石墨烯及其耐腐蚀性研究[D]. 北京: 清华大学, 2015: 95-120.

    YE X H. Rapid laser in-situ growth of grapheme and its anti-corrosion performance[D]. Beijing: Tsinghua University, 2015: 95-120 (in Chinese).
    [17]
    LIU H L, ZHENG Y X, MOON K S, et al. Ambient-air in situ fa-brication of high-surface-area, superhydrophobic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage[J]. Nano Energy, 2022, 94: 106902. DOI: 10.1016/j.nanoen.2021.106902
    [18]
    DAI D H, GU D D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments[J]. Materials and Design, 2014, 55: 482-491. https://www.sciencedirect.com/science/article/pii/S0261306913009333
    [19]
    房永祥, 齐丽君, 王珂, 等. 纯铜表面脉冲激光熔覆Ni60涂层的结构与性能研究[J]. 激光技术, 2017, 41(1): 40-46. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.009

    FANG Y X, QI L J, WANG K, et al. Study on structure and properties of Ni60 coating by pulse laser cladding on pure copper[J]. Laser Technology, 2017, 41(1): 40-46 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.01.009
  • Cited by

    Periodical cited type(2)

    1. 吕通发,何永春,牟鑫,吕超,杨倩倩,郑希,叶晓慧. 激光制备石墨烯/镍/铜触头材料及其性能研究. 陕西科技大学学报. 2023(04): 126-135 .
    2. 杨倩倩,刘源,叶晓慧,强豪,邵星海,曹磊. 激光制备新型石墨烯/银基触头及其性能研究. 激光技术. 2023(06): 766-771 . 本站查看

    Other cited types(1)

Catalog

    Article views (9) PDF downloads (7) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return