Advanced Search
LIANG Feilong, SHI Wenqing, LI Kaiyue, ZHU Zhikai, WU Teng. Effect of Cu mass fraction on microstructure and properties of laser cladded Ni-Cu-WC coatings[J]. LASER TECHNOLOGY, 2023, 47(5): 653-658. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.012
Citation: LIANG Feilong, SHI Wenqing, LI Kaiyue, ZHU Zhikai, WU Teng. Effect of Cu mass fraction on microstructure and properties of laser cladded Ni-Cu-WC coatings[J]. LASER TECHNOLOGY, 2023, 47(5): 653-658. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.012

Effect of Cu mass fraction on microstructure and properties of laser cladded Ni-Cu-WC coatings

More Information
  • Received Date: July 31, 2022
  • Revised Date: August 25, 2022
  • Published Date: September 24, 2023
  • To improve the corrosion resistance of 316L substrate and extend its service life in marine environment, Ni-Cu-WC cladding layers with different copper content were prepared on 316L stainless steel by laser cladding technology. The microstructure, hardness, corrosion resistance, and corrosion behavior of the cladding layer were analyzed by scanning electron microscope, energy dispersive spectroscopy, microhardness tester, and electrochemical workstation. The results show that the coating has good forming quality, and the dendrites of the cladding layer is induced by excessive Cu addition. The addition of Cu partially inhibits the formation of carbide reinforcing phase, resulting in a decrease in the hardness of the cladding layer. At the same time, the Cu element in the cladding layer can effectively improve its corrosion resistance in seawater. The experimental results show that the corrosion resistance is the best when the mass fraction of Cu is 0.1, the corrosion potential increases to -0.864 V in the NaCl solution(mass fraction of 0.035), and the corrosion current density decreases to 0.1049 μA/cm2, respectively. This study provides a theoretical reference for the preparation of seawater corrosion resistant coatings by laser cladding.
  • [1]
    侯保荣. 海洋腐蚀环境理论及应用[M]. 北京: 化学工业出版社, 1999: 1-10.

    HOU B R. Theory and application of marine corrosive environment[M]. Beijing: Chemical Industry Press, 1999: 1-10(in Chinese).
    [2]
    苏璐璐. Q235钢和不锈钢海水腐蚀机理研究[D]. 济南: 山东大学, 2010: 2-7.

    SU L L. Study on corrosion mechanism of Q235 steel and stainless steel in nature seawater[D]. Ji'nan: Shandong University, 2010: 2-7(in Chinese).
    [3]
    LIN C. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade[J]. Vacuum, 2015, 115(2): 117-123.
    [4]
    顾伟, 蒋永锋, 宋亓宁, 等. 镍铝青铜表面激光熔覆Ni60A合金的耐蚀性能[J]. 电焊机, 2018, 48(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201804008.htm

    GU W, JIANG Y F, SONG Q N, et al. Corrosion resistance and cavitation erosion resistance of Ni60A alloy by laser cladding on nickel-aluminum bronze[J]. Electric Welding Machine, 2018, 48(4): 28-32 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201804008.htm
    [5]
    于静, 刘延川. 船用柴油机气缸套再制造新方法——感应熔覆技术研究现状[J]. 热加工工艺, 2019, 48(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201906007.htm

    YU J, LIU Y Ch. Innovative remanufacturing method of cylinder liner of marine disesel engine——research status of induction cladding technology[J]. Hot Working Technology, 2019, 48(6): 26-29 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201906007.htm
    [6]
    孙玉强, 徐鹏. 船用曲轴材料42CrMoA激光熔覆涂层组织及耐磨性能[J]. 材料保护, 2019, 52(10): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910008.htm

    SUN Y Q, XU P. Microstructure and wear resistance of laser cladding coatings on 42CrMoA marine crankshaft materials[J]. Materials Protection, 2019, 52(10): 36-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910008.htm
    [7]
    肖利辉, 丰冬军, 赵乐川, 等. 风电齿轮箱花键轴激光熔覆表面修复工艺[J]. 机械制造, 2022, 60(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202204015.htm

    XIAO L H, FENG D J, ZHAO L Ch, et al. Laser cladding surface repair technology of spline shaft of wind turbine gearbox[J]. Machi-nery, 2022, 60(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202204015.htm
    [8]
    李嘉宁, 刘科高, 张元彬. 激光熔覆技术及应用[M]. 北京: 化学工业出版社, 2015: 40-56.

    LI J N, LIU K G, ZHANG Y B. Laser cladding technology and application[M]. Beijing: Chemical Industry Press, 2015: 40-56(in Chinese).
    [9]
    袁庆龙, 梁宁宁. 纯铜表面改性工艺研究进展[J]. 材料导报, 2012, 26(s2): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S2038.htm

    YUAN Q L, LIANG N N. Research progress on surface modification technologies of pure copper[J]. Materials Reports, 2012, 26(s2): 138-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S2038.htm
    [10]
    ZHOU S F, LEI J B, XIONG Z, et al. Synthesis of Fe-p/Cu-Cu-p/Fe duplex composite coatings by laser cladding[J]. Materials & Design, 2016, 97(2): 431-436.
    [11]
    赵淑珍, 金剑波, 谢敏, 等. 扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响[J]. 中国激光, 2019, 46(3): 0302005. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201903007.htm

    ZHAO Sh Zh, JIN J B, XIE M, et al. Effects of scanning speed on microstructure and wear resistance of Cu80Fe20 immiscible coatings prepared by laser cladding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302005 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201903007.htm
    [12]
    井振宇, 李新梅. 激光熔覆Ni35WC11涂层的参数优化设计[J]. 激光与光电子学进展, 2020, 57(9): 091406 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009018.htm

    JING Zh Y, LI X M. Parameter optimization design of laser cladding Ni35WC11 Coating[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091406(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009018.htm
    [13]
    LI W Y, YANG X F, XIAO J P, et al. Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J]. Ceramics International, 2021, 47(20): 28754-28763.
    [14]
    肖奇, 孙文磊, 刘金朵, 等. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202108025.htm

    XIA Q, SUN W L, LIU J D, et al. Surface corrosion behavior of Ni60A/WC laser cladding coating[J]. Materials Reports, 2021, 35(8): 8146-8150(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202108025.htm
    [15]
    吴腾, 师文庆, 谢林圯, 等. 激光熔覆铁基TiC复合涂层成形质量的控制方法[J]. 激光技术, 2022, 46(3): 344-354. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008

    WU T, SHI W Q, XIE L Y, et al. Forming quality control method of laser cladding Fe-based TiC composite coating[J]. Laser Technology, 2022, 46(3): 344-354(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
    [16]
    王利, 蔺存国, 苏艳, 等. 典型海域船舶用铜材表面生物污损与腐蚀性能研究[J]. 装备环境工程, 2021, 18(8): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202108010.htm

    WANG L, LIN C G, SU Y, et al. Study on the biological fouling and corrosion of copper surface in typical sea area[J]. Equipment Environmental Engineering, 2021, 18(8): 52-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202108010.htm
    [17]
    李青海. 镍基耐蚀合金激光熔覆层的制备与性能研究[D]. 北京: 华北电力大学, 2018: 2-6.

    LIN Q H. The fabrication and properties analysis of laser cladding Ni-based corrosion resistance alloy coating[D]. Beijing: North Ch-ina Electric Power University, 2018: 2-6(in Chinese).
    [18]
    YAN A R, LI Y J, WANG Z Y. Development and characterization of a laser clad WC reinforced Ni-Cu alloy composite coating on brass[J]. Lasers in Engineering, 2014, 29(5): 365-377.
    [19]
    ZHANG J Q, LEI J B, GU Z J, et al. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding[J]. Surface and Coatings Technology, 2020, 393: 125807.
    [20]
    李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008

    LI L Ch, WEI X. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47(1): 52-58(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
    [21]
    李倩, 陈发强, 王茜, 等. 激光熔覆WC增强Ni基复合涂层的研究进展[J]. 表面技术, 2022, 51(2): 129-143. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm

    LI Q, CHEN F Q, WANG Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating[J]. Surface Technology, 2022, 51(2): 129-143(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm
    [22]
    杨广峰, 郜峰, 崔静. 激光功率对TC4熔覆涂层组织及性能的影响[J]. 表面技术, 2023, 52(1): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202301035.htm

    YANG G F, GAO F, CUI J. Effect of laser power on microstructure and properties of TC4 coated coating[J]. Surface Technology, 2023, 52(1): 346-353(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202301035.htm
    [23]
    ZHAO W, KONG D J. Effects of laser power on immersion corrosion and electrochemical corrosion performances of laser thermal sprayed amorphous AlFeSi coatings[J]. Applied Surface Science, 2019, 481(3): 161-173.
    [24]
    张伟华. 激光熔覆AlCoCrFeNixMoy高熵合金涂层组织与耐蚀性研究[D]. 鞍山: 辽宁科技大学, 2021: 27-58.

    ZHANG W H. Microstucture and corrosion resistance of AlCoCrFeNixMoy high entropy alloy coating by laser cladding[D]. Anshan: University of Science and Technology Liaoning, 2021: 27-58(in Chinese).
    [25]
    ZHOU J L, KONG D J. Effects of Al and Ti additions on corrosive-wear and electrochemical behaviors of laser cladded FeSiB coatings[J]. Optics & Laser Technology, 2019, 124: 105958.
    [26]
    NATARAJAN J, YANG C H, KARUPPASAMY S S. Investigation on microstructure, nanohardness and corrosion response of laser cladded colmonoy-6 particles on 316L steel substrate[J]. Materials, 2021, 14(20): 6183.
    [27]
    YANG X T, LI X Q, YANG Q B, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J]. Surface and Coatings Technology, 2020, 385: 125359.
  • Cited by

    Periodical cited type(14)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 赵欣,徐强,黄天明,高冰,熊礼,黄延伟. 不锈钢基材表面激光熔覆钴基合金涂层组织对比研究. 铸造. 2024(07): 982-989 .
    3. 于海峰,陈翔,郭海华. 基于TRIZ理论的刀具梯度熔覆WC涂层的修复工艺改进. 金属加工(冷加工). 2024(08): 58-61 .
    4. 郭海华,陈翔,李金华,姚芳萍,王天赐. M2高速钢表面激光熔覆WC-12Co梯度涂层的制备工艺与实验研究. 制造技术与机床. 2024(09): 71-78 .
    5. 陈颖,黄海鸿,徐鸿蒙,刘志峰. 基于熔池热历史的陶瓷增强金属基复材激光定向能量沉积质量实时监测方法. 计算机集成制造系统. 2024(11): 3943-3953 .
    6. 李艳,王晨旭,江怡蔚,何静,唐冉,刘生龙,琚中毅,唐文健,冷静健,常发成,刘博鑫,刘秀清,王云龙. 65Mn钢表面激光熔覆Fe60-WC复合涂层组织及性能研究. 应用激光. 2024(10): 31-39 .
    7. 徐国辉,李喜春,董彬,于世奇,王林,徐存鑫,郑希,叶晓慧. 激光制备新型石墨烯/铜基复合电触头. 激光技术. 2023(02): 225-232 . 本站查看
    8. 黄江,朱志凯,李凯玥,师文庆,吴香林,谢玉萍. 304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究. 应用激光. 2023(06): 29-35 .
    9. 梁飞龙,师文庆,李凯玥,朱志凯,吴腾. Cu质量分数对激光熔覆Ni-Cu-WC涂层组织和性能的影响. 激光技术. 2023(05): 653-658 . 本站查看
    10. 王杉杉,师文庆,吴腾,程才,朱志凯,陈熙淼,谢林圯,何宽芳. WC质量分数对激光熔覆Ni基涂层组织和性能的影响. 激光技术. 2023(04): 463-468 . 本站查看
    11. 朱志凯,李凯玥,黄江,师文庆,谢玉萍,何敏仪,刘文娟,王杉杉. WC强化Fe60激光熔覆层研究. 应用激光. 2023(08): 10-17 .
    12. 杨倩倩,刘源,叶晓慧,强豪,邵星海,曹磊. 激光制备新型石墨烯/银基触头及其性能研究. 激光技术. 2023(06): 766-771 . 本站查看
    13. 贺敏波,任伟艳,杨雨川,邬志华,胡月宏. 掺杂相对ZrB_2陶瓷涂层抗激光烧蚀性能的影响. 应用光学. 2023(06): 1177-1184 .
    14. 张理,毕贵军,曹立超,常云龙. 激光熔覆60%WC-Ni涂层参数及性能研究. 自动化与信息工程. 2022(02): 1-7+22 .

    Other cited types(8)

Catalog

    Article views (677) PDF downloads (6) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return