Citation: | YU Chunrong, CHEN Hanmei, CHANG Zhansheng, LIU Zhichao. Research on intelligent assembly correction system based on multi-FBG network[J]. LASER TECHNOLOGY, 2022, 46(3): 374-378. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.012 |
[1] |
XU O, LU S, FENG S, et al. Novel fiber-laser-based fiber Bragg grating strain sensor with high-birefringence Sagnac fiber loop mirror[J]. Chinese Optics Letters, 2008, 6(11): 818-820. DOI: 10.3788/COL20080611.0818
|
[2] |
JIANG Y, DUAN Zh, ZHANG X L, et al. Research on the on-line measurement of a birefringence fiber loop mirror strain sensor[J]. Laser Technology, 2020, 44(3): 315-320(in Chinese).
|
[3] |
ALANANY Y M, TAIT M J. Fiber-reinforced elastomeric isolators for the seismic isolation of bridges[J]. Composite Structures, 2016, 160(7): 300-311. DOI: 10.1016/j.compstruct.2016.10.008
|
[4] |
KUANG Y, GUO Y, XIONG L, et al. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey[J]. Photonic Sensors, 2018, 8(4): 320-331. DOI: 10.1007/s13320-018-0504-y
|
[5] |
SHI Q, REN L, YOU R Zh, et al. Development and application of smart bolt based on FBG sensors[J]. Instrument Technique and Sensor, 2020, (12): 10-15(in Chinese).
|
[6] |
LI Ch L, TANG J G, CHENG Ch, et al. FBG arrays for quasi-distributed sensing: A review[J]. Photonic Sensors, 2021, 11(1): 91-108. DOI: 10.1007/s13320-021-0615-8
|
[7] |
WANG X Y, DENGY Q. Multi-reflection optimization of FBG array[J]. Journal of Yanbian University(Natural Science Edition), 2020, 46(2): 134-139(in Chinese).
|
[8] |
MENG X Q, YU J Zh, WANG J. Optical fiber sensor adjustment system for automated assembly process[J]. Semiconductor Optoelectronics, 2020, 41(4): 578-581(in Chinese).
|
[9] |
MULLE M, YUDHANTO A, LUBINEAU G, et al. Internal strain a-ssessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact[J]. Composite Structures, 2019, 215(32): 305-316. DOI: 10.1016/j.compstruct.2019.02.085
|
[10] |
ARNALDO G, LEAL J, CAMILO A R, et al. Simultaneous mea-surement of pressure and temperature with a single FBG embedded in a polymer diaphragm[J]. Optics & Laser Technology, 2019, 112(93): 77-84. DOI: 10.1016/j.optlastec.2018.11.013
|
[11] |
YU C W, LEI S C, CHEN W S, et al. Downhole fiber optic tempe-rature-pressure innovative measuring system used in Sanshing geothermal test site[J]. Geothermics, 2018, 74(31): 190-196.
|
[12] |
GUO Y X, LI X, KONG J Y, et al. Sliding type fiber Bragg grating displacement sensor[J]. Optics & Precision Engineering, 2017, 25(1): 50-58. DOI: 10.3788/OPE.20172501.0050
|
[13] |
BOTSIS J, HUMBERT L, COLPO F, et al. Embedded fiber Bragg grating sensor for internal strain measurement sin polymeric materials[J]. Optics and Laser sin Engineering, 2005, 43(3): 491-510. DOI: 10.1016/j.optlaseng.2004.04.009
|
[14] |
SUN B Ch, LI J Zh, ZHANG W T. Fiber Bragg grating sensor[J]. Optical Fiber Sensing and Structural Health Monitoring Technology, 2019, 26(4): 77-148.
|
[15] |
XIAO H Zh, ZHANG Y N, SHEN L Y, et al. Research on curvature serialization in the curve reconstruction algorithm based on fiber Bragg gratings[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 993-999(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YQXB201605005.htm
|
[16] |
WANG J Y, LIU Zh Ch, LIN X Zh, et al. Fiber Bragg grating strain detection system for digital calibration[J]. Laser Technology, 2020, 44(5): 570-574(in Chinese).
|
[17] |
YUCEL M, TORUN M. Simplified fiber Bragg grating-based temperature measurement system design with enhanced high signal-to-noise ratio[J]. Microwave & Optical Technology Letters, 2018, 60(4): 965-969.
|
[18] |
ESEQUIEL M, LUIS P, ANDREAS T, et al. Optical sensors for bond-slip characterization and monitoring of RC structures. Sensors and Actuators, 2018, A280(1): 332-339. DOI: 10.1016/j.sna.2018.07.042
|
[19] |
JONAS H O, CHESINI G, VALDIR A S, et al. Simplifying the design of microstructured optical fibre pressure sensors[J]. Scientific Reports, 2017, 7: 372-381. DOI: 10.1038/s41598-017-00409-z
|
[20] |
SUN L, HAO H, ZHANG B B, et al. Strain transfer analysis of embedded fiber Bragg grating strain sensor[J]. Journal of Testing and Evaluation, 2016, 44(6): 2312-2320.
|
[1] | CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021 |
[2] | LI Yi, TENG Yunpeng, HAO Peiyu. Miniature high-energy symmetrically-pumped conductive cooling laser[J]. LASER TECHNOLOGY, 2019, 43(1): 115-118. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.023 |
[3] | MA Lili, WU Fuquan, SONG Lianke, SU Fufang, SHI Meng. Extinction ratios of reverse Rochon prisms[J]. LASER TECHNOLOGY, 2017, 41(4): 611-613. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.031 |
[4] | YI Hengyu, QI Yu, YI Xinyi, HUANG Jijin. Development of GA-ASI's high energy laser[J]. LASER TECHNOLOGY, 2017, 41(2): 213-220. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.014 |
[5] | ZHAO Qi, MENG Qing'an, JIANG Zewei, HU Shaoyun, GENG Xu, GAO Mingwei. Study on parameter measurement precision of high energy laser beam with large aperture[J]. LASER TECHNOLOGY, 2015, 39(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.020 |
[6] | LIU Xue-sheng, WANG Zhi-yong, YAN Xin, LIU Teng, WU Qiang, ZUO Tie-chuan. 56J high energy lamp-pumped pulsed Nd:YAG solid-state laser[J]. LASER TECHNOLOGY, 2008, 32(3): 237-239. |
[7] | TIAN Guo-zhou, OU Qun-fei, ZHONG Ming, YE Da-hua, LÜ Bai-da. Thermal-management technology for a 2kJ high energy Nd:glass laser[J]. LASER TECHNOLOGY, 2007, 31(3): 253-256. |
[8] | REN Guo-guang. New tactical high energy liquid laser[J]. LASER TECHNOLOGY, 2006, 30(4): 418-421. |
[9] | WANG Lei, YANG Zhao-jin, LI Gao-ping, LIANG Yan-xi. Research of backscattered laser energy within the energy measurement for large caliber high energy lasers[J]. LASER TECHNOLOGY, 2006, 30(1): 43-46. |
[10] | Huang Yong, Hou Haimei. The tactical high energy laser weapon of America[J]. LASER TECHNOLOGY, 2002, 26(4): 273-276. |
1. |
贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 .
![]() | |
2. |
卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
![]() | |
3. |
李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 .
![]() | |
4. |
石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
![]() | |
5. |
杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
![]() | |
6. |
蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
![]() | |
7. |
晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 .
![]() | |
8. |
陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 .
![]() | |
9. |
胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
![]() | |
10. |
刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .
![]() |