Advanced Search
YU Chunrong, CHEN Hanmei, CHANG Zhansheng, LIU Zhichao. Research on intelligent assembly correction system based on multi-FBG network[J]. LASER TECHNOLOGY, 2022, 46(3): 374-378. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.012
Citation: YU Chunrong, CHEN Hanmei, CHANG Zhansheng, LIU Zhichao. Research on intelligent assembly correction system based on multi-FBG network[J]. LASER TECHNOLOGY, 2022, 46(3): 374-378. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.012

Research on intelligent assembly correction system based on multi-FBG network

More Information
  • Received Date: April 08, 2021
  • Revised Date: May 05, 2021
  • Published Date: May 24, 2022
  • In order to obtain the status information of the workpiece stably under the working environment, the method of multi-fiber Bragg grating (FBG) network monitoring was adopted, and the multi-fiber grating sensors were distributed on the tooling of the assembly structure. On the basis of obtaining the real-time strain field data of the sensitive positions, the difference was analyzed. The function relationship between the assembly error and the strain field distribution, and the appropriate correction parameters were given. The results show that when 100N stress is applied to the workpiece, the maximum deformation value in the x-axis direction is 0.86mm, and the maximum value in the y-axis direction is 0.69mm; compared with the standard measurement data obtained by laser scanning, it can be seen that the test on the x-axis. The average error of the deformation value of the sensitive position is better than 4.7%, and the average error of the deformation value of the sensitive position tested on the y-axis is better than 3.9%. It is feasible to use optical fiber sensing to realize intelligent correction of the assembly process, and it has good linearity and repeatability in the entire test range, which can improve the effect of intelligent assembly control.
  • [1]
    XU O, LU S, FENG S, et al. Novel fiber-laser-based fiber Bragg grating strain sensor with high-birefringence Sagnac fiber loop mirror[J]. Chinese Optics Letters, 2008, 6(11): 818-820. DOI: 10.3788/COL20080611.0818
    [2]
    JIANG Y, DUAN Zh, ZHANG X L, et al. Research on the on-line measurement of a birefringence fiber loop mirror strain sensor[J]. Laser Technology, 2020, 44(3): 315-320(in Chinese).
    [3]
    ALANANY Y M, TAIT M J. Fiber-reinforced elastomeric isolators for the seismic isolation of bridges[J]. Composite Structures, 2016, 160(7): 300-311. DOI: 10.1016/j.compstruct.2016.10.008
    [4]
    KUANG Y, GUO Y, XIONG L, et al. Packaging and temperature compensation of fiber Bragg grating for strain sensing: A survey[J]. Photonic Sensors, 2018, 8(4): 320-331. DOI: 10.1007/s13320-018-0504-y
    [5]
    SHI Q, REN L, YOU R Zh, et al. Development and application of smart bolt based on FBG sensors[J]. Instrument Technique and Sensor, 2020, (12): 10-15(in Chinese).
    [6]
    LI Ch L, TANG J G, CHENG Ch, et al. FBG arrays for quasi-distributed sensing: A review[J]. Photonic Sensors, 2021, 11(1): 91-108. DOI: 10.1007/s13320-021-0615-8
    [7]
    WANG X Y, DENGY Q. Multi-reflection optimization of FBG array[J]. Journal of Yanbian University(Natural Science Edition), 2020, 46(2): 134-139(in Chinese).
    [8]
    MENG X Q, YU J Zh, WANG J. Optical fiber sensor adjustment system for automated assembly process[J]. Semiconductor Optoelectronics, 2020, 41(4): 578-581(in Chinese).
    [9]
    MULLE M, YUDHANTO A, LUBINEAU G, et al. Internal strain a-ssessment using FBGs in a thermoplastic composite subjected to quasi-static indentation and low-velocity impact[J]. Composite Structures, 2019, 215(32): 305-316. DOI: 10.1016/j.compstruct.2019.02.085
    [10]
    ARNALDO G, LEAL J, CAMILO A R, et al. Simultaneous mea-surement of pressure and temperature with a single FBG embedded in a polymer diaphragm[J]. Optics & Laser Technology, 2019, 112(93): 77-84. DOI: 10.1016/j.optlastec.2018.11.013
    [11]
    YU C W, LEI S C, CHEN W S, et al. Downhole fiber optic tempe-rature-pressure innovative measuring system used in Sanshing geothermal test site[J]. Geothermics, 2018, 74(31): 190-196.
    [12]
    GUO Y X, LI X, KONG J Y, et al. Sliding type fiber Bragg grating displacement sensor[J]. Optics & Precision Engineering, 2017, 25(1): 50-58. DOI: 10.3788/OPE.20172501.0050
    [13]
    BOTSIS J, HUMBERT L, COLPO F, et al. Embedded fiber Bragg grating sensor for internal strain measurement sin polymeric materials[J]. Optics and Laser sin Engineering, 2005, 43(3): 491-510. DOI: 10.1016/j.optlaseng.2004.04.009
    [14]
    SUN B Ch, LI J Zh, ZHANG W T. Fiber Bragg grating sensor[J]. Optical Fiber Sensing and Structural Health Monitoring Technology, 2019, 26(4): 77-148.
    [15]
    XIAO H Zh, ZHANG Y N, SHEN L Y, et al. Research on curvature serialization in the curve reconstruction algorithm based on fiber Bragg gratings[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 993-999(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YQXB201605005.htm
    [16]
    WANG J Y, LIU Zh Ch, LIN X Zh, et al. Fiber Bragg grating strain detection system for digital calibration[J]. Laser Technology, 2020, 44(5): 570-574(in Chinese).
    [17]
    YUCEL M, TORUN M. Simplified fiber Bragg grating-based temperature measurement system design with enhanced high signal-to-noise ratio[J]. Microwave & Optical Technology Letters, 2018, 60(4): 965-969.
    [18]
    ESEQUIEL M, LUIS P, ANDREAS T, et al. Optical sensors for bond-slip characterization and monitoring of RC structures. Sensors and Actuators, 2018, A280(1): 332-339. DOI: 10.1016/j.sna.2018.07.042
    [19]
    JONAS H O, CHESINI G, VALDIR A S, et al. Simplifying the design of microstructured optical fibre pressure sensors[J]. Scientific Reports, 2017, 7: 372-381. DOI: 10.1038/s41598-017-00409-z
    [20]
    SUN L, HAO H, ZHANG B B, et al. Strain transfer analysis of embedded fiber Bragg grating strain sensor[J]. Journal of Testing and Evaluation, 2016, 44(6): 2312-2320.
  • Related Articles

    [1]CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021
    [2]LI Yi, TENG Yunpeng, HAO Peiyu. Miniature high-energy symmetrically-pumped conductive cooling laser[J]. LASER TECHNOLOGY, 2019, 43(1): 115-118. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.023
    [3]MA Lili, WU Fuquan, SONG Lianke, SU Fufang, SHI Meng. Extinction ratios of reverse Rochon prisms[J]. LASER TECHNOLOGY, 2017, 41(4): 611-613. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.031
    [4]YI Hengyu, QI Yu, YI Xinyi, HUANG Jijin. Development of GA-ASI's high energy laser[J]. LASER TECHNOLOGY, 2017, 41(2): 213-220. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.014
    [5]ZHAO Qi, MENG Qing'an, JIANG Zewei, HU Shaoyun, GENG Xu, GAO Mingwei. Study on parameter measurement precision of high energy laser beam with large aperture[J]. LASER TECHNOLOGY, 2015, 39(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.020
    [6]LIU Xue-sheng, WANG Zhi-yong, YAN Xin, LIU Teng, WU Qiang, ZUO Tie-chuan. 56J high energy lamp-pumped pulsed Nd:YAG solid-state laser[J]. LASER TECHNOLOGY, 2008, 32(3): 237-239.
    [7]TIAN Guo-zhou, OU Qun-fei, ZHONG Ming, YE Da-hua, LÜ Bai-da. Thermal-management technology for a 2kJ high energy Nd:glass laser[J]. LASER TECHNOLOGY, 2007, 31(3): 253-256.
    [8]REN Guo-guang. New tactical high energy liquid laser[J]. LASER TECHNOLOGY, 2006, 30(4): 418-421.
    [9]WANG Lei, YANG Zhao-jin, LI Gao-ping, LIANG Yan-xi. Research of backscattered laser energy within the energy measurement for large caliber high energy lasers[J]. LASER TECHNOLOGY, 2006, 30(1): 43-46.
    [10]Huang Yong, Hou Haimei. The tactical high energy laser weapon of America[J]. LASER TECHNOLOGY, 2002, 26(4): 273-276.
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (7) PDF downloads (7) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return