Advanced Search
CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021
Citation: CHANG Jianping, SHE Yichen, YAN Jin, TIAN Youwei. Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons[J]. LASER TECHNOLOGY, 2023, 47(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.021

Effects of polarization parameters on the motion and radiation characteristics of high-energy electrons

More Information
  • Received Date: November 07, 2021
  • Revised Date: January 18, 2022
  • Published Date: January 24, 2023
  • In order to explore the gradient changes of super laser polarization parameters based on the high energy electron motion and the influence of radiation characteristics, based on the basic equation of electromagnetism, a relativistic electron acceleration model was derived and set up with the initial momentum of 0. Then a numerical simulation program of no approximation was developed for iterative calculation and theoretical analysis. Visualized data of single electron motion and space radiation under different polarization parameters were obtained. The results show that with the increase of the polarization parameter δ from 0 to 1, the trajectory of the electron gradually changes from 2-D plane oscillation to 3-D spiral, and the amplitude of rotation increases gradually, and the trajectory projection tends to be positive circle. The spatial distribution of electron power radiation gradually changed from planar linear to 3-D vortex, and gradually changed from up-down needle-like bifurcation to smooth connection. The general change trend can be divided into four stages according to morphology: δ=0, δ∈(0, 0.6], δ∈(0.6, 0.99] and δ=1. The results provide a theoretical and numerical basis for the study of high-energy electron radiation from multiple perspectives, and are helpful for the accurate detection of super-strong laser parameters in practical applications.
  • [1]
    FENNEL T, MEIWES-BROER K H, TIGGESBÄUMKER J, et al. Laser-driven nonlinear cluster dynamics[J]. Reviews of Modern Physics, 2010, 82(2): 1793-1842. DOI: 10.1103/RevModPhys.82.1793
    [2]
    ESAREY E, SCHROEDER C B, LEEMANS W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285. DOI: 10.1103/RevModPhys.81.1229
    [3]
    张杰. 强场物理——一门崭新的学科[J]. 物理, 1997, 26(11): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ711.001.htm

    ZHANG J. Physics of strong fields——A new subject[J]. Physics, 1997, 26(11): 5-11 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ711.001.htm
    [4]
    MOUROU G A, TAJIMA T, BULANOV S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371. DOI: 10.1103/RevModPhys.78.309
    [5]
    BRABEC T, KRAUSZ F. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Review of Modern Physics, 2000, 72(72): 545-591.
    [6]
    王红英. 光学参量啁啾脉冲放大技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2008: 1-125.

    WANG H Y. Study on optical parametric chirped pulse amplification technology[D]. Xi'an: Graduate University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2008: 1-125(in Chinese).
    [7]
    李明华. 超快激光驱动的电子束与X射线源[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2017, 63-64.

    LI M H. Electron beam and X-ray source driven by ultrafast laser[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2017: 63-64(in Chin-ese).
    [8]
    COSSACK M. All-optical scheme for generation of isolated attosecond electron pulses[J]. Physical Review Letters, 2019, 123(20): 202-203.
    [9]
    LEE K, CHUNG S Y, PARK S H, et al. Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson sca-ttered radiation by a relativistic electron[J]. EPL (Europhysics Le-tters), 2010, 89(6): 613-630.
    [10]
    "我国激光技术与应用2035发展战略研究"项目综合组. 我国激光技术与应用2035发展战略研究[J]. 中国工程科学, 2020, 22(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003002.htm

    COMPREHENSIVE GROUP OF "CHINA LASER TECHNOLOGY AND APPLICATION 2035 DEVELOPMENT STRATEGY RESEARCH" PROJECT. Strategic research on China's laser technology and its application by 2035[J]. Strategic Study of Chinese Aca-demy of Engineering, 2020, 22(3): 1-6 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202003002.htm
    [11]
    TEUBNER U, GIBBON P. High-order harmonics from laser-irradiated plasma surfaces[J]. Reviews of Modern Physics, 2009, 81(2): 445-479. DOI: 10.1103/RevModPhys.81.445
    [12]
    KRITCHER A L, NEUMAYER P, CASTOR J, et al. Ultrafast X-ray Thomson scattering of shock-compressed matter[J]. Science, 2008, 322(5898): 69-71. DOI: 10.1126/science.1161466
    [13]
    CORDE S, PHUOC K T, LAMBERT G, et al. Femtosecond X-rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48. DOI: 10.1103/RevModPhys.85.1
    [14]
    WU H C. Phase-independent generation of relativistic electron sheets[J]. Applied Physics Letters, 2011, 99(2): 021503. DOI: 10.1063/1.3609872
    [15]
    郑君, 盛政明, 张杰, 等. 影响单电子非线性汤姆孙散射因素的研究[J]. 物理学报, 2005, 54(3): 1018-1035. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm

    ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors a-ffecting the single electron nonlinear Thomson scattering[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm
    [16]
    POPA A. Accurate calculation of high harmonics generated by relativistic Thomson scattering[J]. Journal of Physics, 2007, B41(1): 015601.
    [17]
    田友伟, 李升华, 董健堂. 周期量级强激光场中电子振荡所导致的辐射的空间分布特性[J]. 光散射学报, 2010, 22(2): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201002003.htm

    TIAN Y W, LI Sh H, DONG J T. Spatial distribution characteristics of radiation induced by electron oscillations in periodic high intensity laser field[J]. Journal of Light Scattering, 2010, 22(2): 120-123 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201002003.htm
    [18]
    吴悦, 刘宇航, 崔艺, 等. 束腰半径对高能电子与圆偏振激光对撞运动轨迹的影响[J]. 激光杂志, 2020, 41(7): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202007009.htm

    WU Y, LIU Y H, CUI Y, et al. Influence of beam waist radius on the trajectory of collisions between high-energy electrons and circularly polarized lasers[J]. Laser Journal, 2020, 41(7): 44-46 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202007009.htm
    [19]
    李康, 田友伟. 圆偏振激光脉冲加速高能电子的运动数值模拟[J]. 激光杂志, 2019, 40(3): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201903006.htm

    LI K, TIAN Y W. Numerical simulation of high energy electron acceleration by circularly polarized laser pulse[J]. Laser Journal, 2019, 40(3): 23-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201903006.htm
    [20]
    吕崇玉, 陈泽洋, 朱文欣, 等. 紧聚焦强激光脉冲中电子的非对称性辐射[J]. 激光技术, 2022, 46(3): 422-426. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.020

    LV Ch Y, CHEN Z Y, ZHU W X, et al. The asymmetric emission of electrons in tightly focused high intensity laser pulses[J]. Laser Technology, 2022, 46(3): 422-426(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.020
  • Cited by

    Periodical cited type(6)

    1. 赵军峰,冯斌,王浩圣. 高性能半导体激光器电源系统设计与研究. 应用激光. 2024(02): 113-124 .
    2. 盖俊帅,马玉婷,张运海,杨皓旻,刘玉龙. 用于眼底成像的双光楔裂像电控调焦系统. 激光技术. 2024(04): 484-490 . 本站查看
    3. 郭俊超,韩耀锋,张晓辉,李龙骧,王诚,寿少峻,马世伟,孙翌乔. 机载130 mJ激光照射器的脉冲驱动电源设计. 激光杂志. 2024(09): 14-18 .
    4. 金冬月,洪福临,张万荣,张洪源,王毅华,王焕哲,王楷尧,关宝璐. 垂直腔面发射激光器阵列的热设计研究进展. 激光技术. 2024(06): 777-789 . 本站查看
    5. 王婷,魏明,宋巍. 窄脉冲激光器驱动电路延时反馈控制研究. 激光杂志. 2024(12): 40-44 .
    6. 许源,王武,倪小龙,闫钰锋,于信,白素平. 一种GaN FET的窄脉冲激光器驱动电源系统设计. 计算机测量与控制. 2022(09): 272-279 .

    Other cited types(5)

Catalog

    Article views (7) PDF downloads (6) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return