Advanced Search
LI Chuan, CHEN Antao, ZHAO Wenjuan, HAN Yiping. Nanosecond fiber lasers with three narrow linewidths and high peak power[J]. LASER TECHNOLOGY, 2019, 43(6): 753-756. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.004
Citation: LI Chuan, CHEN Antao, ZHAO Wenjuan, HAN Yiping. Nanosecond fiber lasers with three narrow linewidths and high peak power[J]. LASER TECHNOLOGY, 2019, 43(6): 753-756. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.004

Nanosecond fiber lasers with three narrow linewidths and high peak power

More Information
  • Received Date: January 15, 2019
  • Revised Date: February 25, 2019
  • Published Date: November 24, 2019
  • In order to suppress the stimulated Brillouin scattering effect in narrow linewidth pulse fiber amplifiers, the linewidth of single-frequency seed source was expanded by using multi-spectral line technology. The experimental verification of high peak power pulse all-fiber laser based on three-line master oscillator power amplifier was carried out. The results show that, after two-stage preamplifier and one-stage power amplifier, the maximum average power of laser output is 303W, pulse width is 2.8ns, repetition rate is 3.1MHz, and the corresponding peak power is 35kW. At the highest power output, the beam quality of the laser is less than 1.3. The structure of three spectral lines has obvious inhibition effect on stimulated Brillouin scattering. This study provides a reference for the amplification technology of high peak power pulsed fiber lasers.
  • [1]
    LEIGH M A, SHI W, ZONG J, et al. Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal[J]. IEEE Photonics Technology Letters, 2009, 21(1):27-29. DOI: 10.1109/LPT.2008.2008195
    [2]
    CARLSON C G, DRAGIC P D, PRICE R K, et al. A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric doppler temperature lidar[J].IEEE Journal of Selected Topics in Quantum Electronics, 2015, 15(2):451-461. http://ieeexplore.ieee.org/document/4806044/
    [3]
    WU W D, REN T Q, ZHOU J, et al. Frequency doubling of narrow-linewidth pulsed fiber laser[J].Chinese Optics Letters, 2012, 10(5):23-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg-e201205007
    [4]
    SCHRÖDER T, LEMMERZ C, REITEBUCH O, et al. Frequency jitter and spectral width of an injection-seeded Q-switched Nd: YAG laser for a doppler wind lidar[J].Applied Physics, 2007, B87(3):437-447. DOI: 10.1007/s00340-007-2627-5
    [5]
    LIU A, NORSEN M A, MEAD R D. 60W green output by frequency doubling of a polarized Yb-doped fiber laser[J]. Optics Letters, 2005, 30(1):67-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47d1350f9b36e8dd90f52f2ed0b0e7d2
    [6]
    YANG Q B, LIU Sh J, WANG Y T, et al. Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser [J].Laser & Optoelectronics Progress, 2017, 54(9): 091406(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201709032
    [7]
    CHEN N, LIU Y X, DU S Zh, et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy [J].Laser & Optoelectronics Progress, 2016, 53(5): 050003(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201605003
    [8]
    DENG H R, LI T, NIU R H, et al. Study on cladding light strippers in high power fiber lasers[J]. Laser Technology, 2013, 37(1): 63-67(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706006
    [9]
    HE X K, FENG L T, SHEN Q H et al. Experimental study about effect of stimulated Brillouin scattering in single frequency pulsed fiber amplifiers[J]. Laser Technology, 2012, 36(2):191-193(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201202011
    [10]
    SHI W, PETERSEN E B, NGUYEN D T, et al. 220μJ monolithic single-frequency Q-switched fiber laser at 2μm by using highly Tm-doped germanate fibers[J].Optics letters, 2011, 36(18):3575-3577. DOI: 10.1364/OL.36.003575
    [11]
    SHI W, PETERSEN E, FANG Q, et al. mJ-level 2μm transform-limited nanosecond pulses based on highly Tm-doped germanate fibers[C]//Fiber Laser Applications.Washington DC, USA: Optical Society of America, 2012: FTh4A.1.
    [12]
    RAN Y, SU R T, MA P F, et al. High power narrow-linewidth linearly polarized nanosecond all-fiber amplifier with near-diffraction-limited beam quality[J]. Journal of Optics, 2016, 18(1):015506. DOI: 10.1088/2040-8978/18/1/015506
    [13]
    LI Ch, HAN Y P, ZHAO W J. 31kW Narrow-linewidth linearly polarized nanosecond all-polarization-maintaining fiber laser[J]. Chin-ese Journal of Lasers, 2018, 45(4):401015 (in Chinese). DOI: 10.3788/CJL201845.0401015
    [14]
    SU R T, WANG X L, ZHOU P, et al. All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power[J].Laser Physics Letters, 2012, 10(1):015105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3907e86bb174266d9960fc1dbac9ddb
    [15]
    HUTCHINGS D C, ARNOLD J M. Polarization stability of solitons in birefringent optical fibers[J].Journal of the Optical Society of America, 1999, B16(16):513-518. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.7231
    [16]
    ZOU F, WANG Z, WANG Z, et al. Gigahertz narrow-linewidth high-peak power nanosecond fiber laser[J]. Chinese Journal of Lasers, 2016, 43(7):0701001. DOI: 10.3788/CJL201643.0701001
    [17]
    LI J X, LI B, ZHU G Zh, et al. Study on cladding light strippers in high power fiber lasers[J]. Laser Technology, 2017, 41(6):798-802(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201706006
    [18]
    ALESHKINA S, KOCHERGINA T A, BOBKOV K K, et al. High-power 125-μm-optical-fiber cladding light stripper[C]//Lasers and Electro-Optics. New Yorks, USA: IEEE, 2016: JTu5A.106.
    [19]
    YIN L, YAN M, HAN Z, et al. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies[J]. Optics Express, 2017, 25(8):8760-8776. DOI: 10.1364/OE.25.008760
    [20]
    KLINER A, HOU K C, PLÖTNER M, et al. Fabrication and evaluation of a 500W cladding-light stripper[J]. Proceedings of the SPIE, 2013, 8616: 86160N. DOI: 10.1117/12.2001984
  • Related Articles

    [1]HOU Tao, CAO Fengli, ZHANG Rongzhu. Effect of polarization error on combining efficiency of coherent polarization beam[J]. LASER TECHNOLOGY, 2018, 42(4): 572-576. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.026
    [2]ZHENG Biju, WEI Jinyu, JIANG Yehua, ZHANG Xijun. Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2016, 40(3): 432-435. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.028
    [3]WANG Peng, YUAN Caojin, WANG Lin, LI Chongguang. Encryption and decryption for double images based on fractional Fourier transformation[J]. LASER TECHNOLOGY, 2014, 38(4): 551-555. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.023
    [4]QIAN Guo-lin, LI Chao-ming, CHEN Xin-rong, ZOU Wen-long, WU Jian-hong. Error analysis of holographic mosaic gratings[J]. LASER TECHNOLOGY, 2013, 37(6): 747-751. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.009
    [5]YANG Ren-fu, ZHU Xiao-li, CHEN Jun-ning. Error simulation of Ronchi gratings[J]. LASER TECHNOLOGY, 2012, 36(1): 37-41. DOI: 10.3969/j.issn.1001-3806.2012.01.011
    [6]QIU Xing-wu. Microstructure and properties of laser transformation hardening layer on 1Cr18Ni9Ti[J]. LASER TECHNOLOGY, 2011, 35(3): 425-427,432. DOI: 10.3969/j.issn.1001-3806.2011.03.036
    [7]XIAO Yong-liang, LIU Qiang, YUAN Sheng, ZHOU Xin, ZHAO Xiao-jun, YANG Ze-hou, CHEN Yong, ZHOU Ding-fu. Study about decryption based on optical image encryption system in the Fresnel domain[J]. LASER TECHNOLOGY, 2009, 33(4): 433-436. DOI: 10.3969/j.issn.1001-3806.2009.04.029
    [8]CHENG Ju, SU Xian-yu. Study on error diffusion algorithm of binary encode grating[J]. LASER TECHNOLOGY, 2007, 31(3): 322-325,332.
    [9]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [10]Tan Suqing, Zhou Jin, Gao Wenqi. Amplitude vector analytics of binary optical element fabrication errors[J]. LASER TECHNOLOGY, 1996, 20(5): 308-312.

Catalog

    Article views (11) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return