Advanced Search
YANG Xiaofei, WANG Gao, QIU Xuanbing, LIU Shuping, WEI Jilin, LI Chuanliang. Study on B2Σ+~ X2Σ+ spectra and temperature of CN radicals based on LIBS[J]. LASER TECHNOLOGY, 2019, 43(5): 719-723. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.025
Citation: YANG Xiaofei, WANG Gao, QIU Xuanbing, LIU Shuping, WEI Jilin, LI Chuanliang. Study on B2Σ+~ X2Σ+ spectra and temperature of CN radicals based on LIBS[J]. LASER TECHNOLOGY, 2019, 43(5): 719-723. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.025

Study on B2Σ+~ X2Σ+ spectra and temperature of CN radicals based on LIBS

More Information
  • Received Date: November 21, 2018
  • Revised Date: December 09, 2018
  • Published Date: September 24, 2019
  • In order to study the B2Σ+~X2Σ+ spectra of CN radical and temperature under different conditions, laser-induced breakdown spectroscopy was used to break high purity graphite in air environment and produce CN free radicals. Emission spectra of B2Σ+~X2Σ+ were measured by high resolution spectrometer. The spectra of CN radicals under different conditions were studied by changing laser energy and laser focus position. The results show that, when laser energy is tuned from 30mJ to 50mJ and the increasing step size is 5mJ, spectral intensity increases with the increase of laser energy. When single pulse energy is 50mJ, spectral intensity reaches its maximum. In addition, when the distance between the upper surface of graphite and laser focal point is 8mm, signal-to-noise ratio reaches the maximum. LIFBASE software is used to fit the spectral data. The vibration temperature of CN radical is about 104K. The rotating temperature is about 4000K. Vibration temperature of CN radicals decreases and rotational temperature increases with the increase of distance. These results play an important role in studying cosmic stars and exploring high temperature chemical reaction.
  • [1]
    PORTNOV A, ROSENWAKS S, BAR I. Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air[J]. Applied Optics, 2003, 42(15): 2835-2842. DOI: 10.1364/AO.42.002835
    [2]
    LEACH S. CN spectroscopy and cosmic background radiation measurements[J]. Canadian Journal of Chemistry, 2004, 82(6): 730-739. DOI: 10.1139/v04-036
    [3]
    LEACH S. Why COBE and CN spectroscopy cosmic background radiation temperature measurements differ, and a remedy[J]. Monthly Notices of the Royal Astronomical Society, 2012, 421(2): 1325-1330. DOI: 10.1111/j.1365-2966.2011.20390.x
    [4]
    KRISTYNA S, KSENIYA D, PATRIK S, et al. A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry[J]. Analyst, 2010, 135(5): 1106-1114. DOI: 10.1039/b926425f
    [5]
    LIN X, YU X L, LI F, et al. Temperature measurements in simulated Mars atmospheres based on the CN radical emission spectrum[J]. Chinese Journal of Theoretical & Applied Mechanics, 2014, 46(2): 201-208(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201402004
    [6]
    SCHAEFER III H F, HEIL T G. Electronic structures and potential energy curves for the low-lying states of the CN radical[J]. The Journal of Chemical Physics, 1971, 54(6): 2573-2580. DOI: 10.1063/1.1675214
    [7]
    DAS G, JANIS T, WAHL A C. Ground and excited states of the diatoms CN and AlO[J]. Journal of Chemical Physics, 1974, 61(4): 1274-1279. DOI: 10.1063/1.1682049
    [8]
    RAM R S, DAVIS S P, WALLACE L, et al. Fourier transform emi-ssion spectroscopy of the B2Σ+ ~X2Σ+, system of CN[J]. Journal of Molecular Spectroscopy, 2006, 237(2): 225-231. DOI: 10.1016/j.jms.2006.03.016
    [9]
    PRASAD C V V, BERNATH P F. Fourier transform jet-emission spectroscopy of the A2Πi~X2Σ+ transition of CN[J]. Journal of Molecular Spectroscopy, 1992, 156(2): 327-340. DOI: 10.1016/0022-2852(92)90235-G
    [10]
    HOBBS L M, THORBURN J A, OKA T, et al. Atomic and molecular emission lines from the red rectangle[J]. The Astrophysical Journal, 2004, 615(2): 947-957. DOI: 10.1086/424733
    [11]
    REHFUSS B D, SUH M H, MILLER T A, et al. Fourier transform UV, visible, and infrared spectra of supersonically cooled CN radical[J]. Journal of Molecular Spectroscopy, 1992, 151(2): 437-458. DOI: 10.1016/0022-2852(92)90578-C
    [12]
    KOTLAR A J, FIELD R W, STEINFELD J I, et al. Analysis of perturbations in the A2Π~X2Σ+, "Red" system of CN[J]. Journal of Molecular Spectroscopy, 1980, 80(1): 86-108. DOI: 10.1016/0022-2852(80)90272-6
    [13]
    GUO L B, HAO R F, HAO Zh Q, et al. Study on the emission spectrum of AlO radical B2Σ+~X2Σ+ transition using laser-induced breakdown spectroscopy[J]. Acta Physica Sinica, 2013, 62(22): 224211(in Chinese).
    [14]
    LIU Y F, ZHANG L Sh, HE W L, et al. Spectroscopic study on the laser-induced breakdown flame plasma[J]. Acta Physica Sinica, 2015, 64(4): 045202(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0249cfa5fd5dca5a6b2805eb28ada206
    [15]
    NAGESWARA R E, SREEDHAR S, TEWARI S P, et al. CN, C2 molecular emissions from pyrazole studied using femtosecond LIBS[C]//International Conference on Fibre Optics and Photonics. Washington DC, USA: Optical Society of America, 2012: TPo.3.
    [16]
    MOUSAVI S J, FARSANI M H, DARBANI S M R, et al. CN and C2, vibrational spectra analysis in molecular LIBS of organic mate-rials[J]. Applied Physics, 2016, B122(5): 1-16.
    [17]
    CHEN X L. Research on the method of component analysis by laser-induced breakdown spectroscopy[D]. Hefei: Hefei University of Technology, 2014: 7-8(in Chinese).
    [18]
    LIU Y H, CHEN M, LIU X D, et al. The mechanism of effect of lens-to-sample distance on laser-induced plasma[J]. Acta Physica Sinica, 2013, 62(2): 025203(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201302058
    [19]
    HAHN D W, OMENETTO N. Laser-induced breakdown spectroscopy (LIBS), part Ⅱ: review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419. DOI: 10.1366/11-06574
    [20]
    SHAO Y, GAO X, DU Ch, et al. The LIBS experiment condition optimization of alloy steel[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 531-534(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201302054
    [21]
    PENG Zh M, DING Y J, ZHAI X D, et al. Measurements of rotational and vibrational temperatures based on flame emission spectroscopy[J]. Acta Physica Sinica, 2011, 60(10): 104702(in Chin-ese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201110066
    [22]
    LUQUE J, CROSLEY D R. Lifbase: database and spectral simulation program (version 1.5)[J/OL]. (1999-01)[2018-12-07]. https://www.researchgate.net/publication/283423321_LIFBASE_Database_and_Spectral_Simulation_Program_Version_15.
  • Related Articles

    [1]ZHOU Jia, ZHOU Liao, OUYANG Li, JIAO Hui, HUANG Yuxing, LONG Yuhong. Optimization of ultrasonic-assisted underwater laser cutting monocrystalline silicon process based on CBDC[J]. LASER TECHNOLOGY, 2024, 48(6): 913-921. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.018
    [2]QI Litao, LIU Jinxian, MA Lili, LI Cuntao. Experimental investigation on mask assisted laser cutting of PDMS[J]. LASER TECHNOLOGY, 2024, 48(5): 691-697. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.012
    [3]QI Litao, LIU Fengcong, ZHANG Yaodong. Experimental investigation on 266nm ultraviolet solid-state laser cutting of carbon fiber reinforced plastics[J]. LASER TECHNOLOGY, 2022, 46(3): 402-407. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.017
    [4]DI Caixiang, SUN Yanjun, WANG Fei, CHEN Xi, DING Wei. Temperature field simulation of laser cut carbon fiber reinforced plastics[J]. LASER TECHNOLOGY, 2020, 44(5): 628-632. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.017
    [5]JIANG Yi, CHEN Genyu, ZHOU Cong, ZHANG Yan. Research of carbon fiber reinforced plastic cut by picosecond laser[J]. LASER TECHNOLOGY, 2017, 41(6): 821-825. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.011
    [6]YANG Baojian, XIE Shunde, DAI Fu. Design of coupling device for laser cutting guided by water beam[J]. LASER TECHNOLOGY, 2017, 41(2): 247-250. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.020
    [7]JIA Xin-ting, HE Chang-yu, WANG You-qing. Study on real-time power control of laser cutting systems[J]. LASER TECHNOLOGY, 2009, 33(2): 145-146,150.
    [8]ZHANG Yong-qiang, WU Yan-hua, CHEN Wu-zhu, ZHANG Xu-dong. Study on relationship between radiation and quality for laser cutting[J]. LASER TECHNOLOGY, 2007, 31(4): 397-399,444.
    [9]Lou Qihong, Zhang Lin, Ye Zhenhuan, Dong Jingxing, Wei Yunrong. Experimental research on Si cutting by using UV excimer laser[J]. LASER TECHNOLOGY, 2002, 26(4): 250-251,254.
    [10]Shi Xiaoqiang. Laser cutting of low carbon steel sheets[J]. LASER TECHNOLOGY, 1998, 22(6): 343-345.

Catalog

    Article views (2) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return