Advanced Search
ZHOU Jia, ZHOU Liao, OUYANG Li, JIAO Hui, HUANG Yuxing, LONG Yuhong. Optimization of ultrasonic-assisted underwater laser cutting monocrystalline silicon process based on CBDC[J]. LASER TECHNOLOGY, 2024, 48(6): 913-921. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.018
Citation: ZHOU Jia, ZHOU Liao, OUYANG Li, JIAO Hui, HUANG Yuxing, LONG Yuhong. Optimization of ultrasonic-assisted underwater laser cutting monocrystalline silicon process based on CBDC[J]. LASER TECHNOLOGY, 2024, 48(6): 913-921. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.018

Optimization of ultrasonic-assisted underwater laser cutting monocrystalline silicon process based on CBDC

More Information
  • Received Date: October 29, 2023
  • Revised Date: November 27, 2023
  • Published Date: November 24, 2024
  • In order to rapidly optimize the ultrasonic-assisted underwater nanosecond laser cutting process, the impact of cavitation bubble dynamics characteristics (CBDC) on the process outcomes was analyzed. And theoretical analysis and experimental validation were carried out using numerical simulation analysis, orthogonal experiments, and high-speed imaging methods. Optimal parameters for the ultrasonic-assisted underwater laser cutting process were obtained, and the CBDC was confirmed to be the primary factor affecting the cutting process. The results showe that as the interference of cavitation bubbles with the laser beam increases, the cutting depth decreases while the cutting speed increases. As the depth-to-width ratio of the groove increases, the pulsating shock from cavitation bubbles exerte greater equivalent stress on the groove bottom. The maximum depth-to-width ratio of approximately is 1.71 achieved when ultrasonic power Pu=65 W, water layer thickness hw=1 mm, laser pulse frequency fq=20 kHz, and laser scanning speed v=1 mm/s, respectively. Under these conditions, the groove width is approximately 99.88 μm, the groove depth is approximately 170.18 μm, the size of the heat-affected zone is approximately 31.71 μm, and the microcrack length is approximately 33.42 μm. At this time, the cavitation bubble cycle is shorter (approximately 100 μs~160 μs). This research can provide valuable insights for optimizing the parameters of multi-field underwater laser composite processing.
  • [1]
    HSIAO W, TSENG S, HUANG K, et al. Pulsed Nd ∶YAG laser treatment of monocrystalline silicon substrate[J]. International Journal of Advanced Manufacturing Technology, 2011, 56: 223-231. DOI: 10.1007/s00170-011-3170-4
    [2]
    ZHAO X, SHIN Y C. Ablation enhancement of silicon by ultrashort double-pulse laser ablation[J]. Applied Physics Letters, 2014, 105(11): 111907. DOI: 10.1063/1.4896350
    [3]
    栾美玲, 郑家鑫, 孙相超, 等. 液体辅助激光加工硬脆材料及其应用[J]. 光电工程, 2023, 50(3): 220328.

    LUAN M L, ZHENG J X, SUN X Ch, et al. Liquid-assisted laser fabrication of hard materials and applications[J]. Opto-Electron Engineering, 2023, 50(3): 220328(in Chinese).
    [4]
    周辽, 龙芋宏, 焦辉, 等. 水雾对激光加工CFRP的影响特性研究[J]. 激光技术, 2023, 47(6): 786-794. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.009

    ZHOU L, LONG Y H, JIAO H, et al. Study on the effect of water-mist on laser processing of CFRP[J]. Laser Technology, 2023, 47(6): 786-794(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.06.009
    [5]
    WANG H, ZHU S, XU G, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd ∶YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139.
    [6]
    SHI C, REN N F, WANG H, et al. Effects of ultrasonic assistance on microhole drilling based on Nd ∶YAG laser trepanning[J]. Optics & Laser Technology, 2018, 106: 451-460.
    [7]
    XIA K, REN N F, WANG H, et al. Analysis for effects of ultrasonic power on ultrasonic vibration-assisted single-pulse laser drilling[J]. Optics and Lasers in Engineering, 2018, 110: 279-287. DOI: 10.1016/j.optlaseng.2018.04.022
    [8]
    WU X B, NAPERVILLE I. Ultrasound-assisted water-confined laser micromachining: US, 20140263213A1[P]. 2014-09-18.
    [9]
    LIU Z, GAO Y, WU B. Ultrasound-assisted water-confined laser micromachining: A novel machining process[J]. Manufacturing Letters, 2014, 2(4): 87-90. DOI: 10.1016/j.mfglet.2014.06.001
    [10]
    LIU Z, WU B, SAMANTA A. Ultrasound-assisted water-confined laser micromachining (UWLM) of metals: Experimental study and time-resolved observation[J]. Journal of Materials Processing Technology, 2017, 245: 259-269. DOI: 10.1016/j.jmatprotec.2016.11.038
    [11]
    CHAREE W, TANGWARODOMNUKUN V, DUMKUM C. Preliminary study of ultrasonic assisted underwater laser micromachining of silicon[J]. Applied Mechanics and Materials, 2016, 835: 139-143. DOI: 10.4028/www.scientific.net/AMM.835.139
    [12]
    CHAREE W, TANGWARODOMNUKUN V, DUMKUM C. Ultrasonic-assisted underwater laser micromachining of silicon[J]. Journal of Materials Processing Technology, 2016, 231: 209-220. DOI: 10.1016/j.jmatprotec.2015.12.031
    [13]
    YAO Y Sh, YUAN G F, CHEN X H, et al. Study on ultrasonic assisted laser under liquid processing platform[J]. Advanced Materials Research, 2013, 765/767: 3090-3093. DOI: 10.4028/www.scientific.net/AMR.765-767.3090
    [14]
    姚燕生, 王园园, 李修宇, 等. 水环境下激光超声复合加工实验研究[J]. 应用激光, 2015, 35(2): 224-229.

    YAO Y Sh, WANG Y Y, LI X Y, et al. Experimental study of laser-ultrasonic combined machining under water[J]. Applied Laser, 2015, 35(2): 224-229(in Chinese).
    [15]
    姚燕生, 袁珠珠, 王园园, 等. 氮化硅陶瓷水下激光与超声复合加工方法及其机理研究[J]. 机械工程学报, 2017, 53(7): 207-216.

    YAO Y Sh, YUAN Zh Zh, WANG Y Y, et al. Research on ultrasonic-laser machining underwater and its mechanism for silicon nitride ceramics[J]. Journal of Mechanical Engineering, 2017, 53(7): 207-216(in Chinese).
    [16]
    吴浩, 冯爱新, 吕豫文, 等. 水下超声场辅助激光成孔实验研究[J]. 应用激光, 2016, 36(1): 90-95.

    WU H, FENG A X, LV Y W, et al. Experimental research on ultrasonic assisted laser drilling underwater[J]. Applied Laser, 2016, 36(1): 90-95(in Chinese).
    [17]
    ZHOU J, XU R, JIAO H, et al. Study on the mechanism of ultrasonic-assisted water confined laser micromachining of silicon[J]. Optics and Lasers in Engineering, 2020, 132: 106118.
    [18]
    ZHOU J, JIAO H, HUANG Y, et al. The mechanism of micro-cracks formation in ultrasonic-assisted water confined laser micromachining silicon[J]. Optics Communications, 2021, 488: 126745.
    [19]
    李娜, 汤少华, 陆梦洁, 等. 激光波长对水体中激光诱导击穿光谱和空化气泡演化的影响[J]. 光学学报, 2022, 42(18): 1801005.

    LI N, TANG Sh H, LU M J, et al. Effect of laser wavelength on laser-induced breakdown spectrum and evolution of cavitation bubble in bulk water[J]. Acta Optica Sinica, 2022, 42(18): 1801005(in Chinese).
    [20]
    LETZEL A, SANTORO M, FROHLEIKS J, et al. How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids[J]. Applied Surface Science, 2019, 473: 828-837.

Catalog

    Article views (655) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return