Advanced Search
LI Kai, XIN Jingtao, XIA Jiabin, ZHU Lianqing. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J]. LASER TECHNOLOGY, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006
Citation: LI Kai, XIN Jingtao, XIA Jiabin, ZHU Lianqing. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J]. LASER TECHNOLOGY, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006

Research of rapid annealing of fiber Bragg gratings based on arc plasma

More Information
  • Received Date: November 13, 2016
  • Revised Date: January 05, 2017
  • Published Date: September 24, 2017
  • In order to realize rapid annealing of fiber Bragg gratings, high temperature arc plasma heat treatment method was adopted. The related experiments were designed for verification. A fiber Bragg grating (FBG) with transmission spectrum depth of 23dB, central wavelength of 1552.09nm and 3dB bandwidth of 0.2784nm was scanned by arc plasma discharging. The results show that the transmission spectrum depth is reduced, the 3dB bandwidth is narrowed and the central wavelength shows blue shift. The variation trend of each parameter is slowed down with the increasing of the repetitive scanning times. Finally, the transmission spectrum depth is reduced by 13dB, the central wavelength is shifted blue by 0.84nm and the 3dB bandwidth is narrowed by 0.1013nm. After fiber grating is annealed in a high temperature furnace for 24h, the transmission spectrum depth, central wavelength and 3dB bandwidth remain the same. It is feasible to use arc plasma for the annealing of FBG with the advantages of short cycle and no damage of the coating layer.
  • [1]
    WANG Y P, TANG J, YIN G L, et al. The fabrication method and sensing application of fiber grating[J]. Journal of Vibration, Measurment & Diagonosis, 2015, 35(5):809-819(in Chinese).
    [2]
    XU H F, YANG Zh Ch, LIU Sh Ch, et al. Application of fiber Bragg grating sensing technology in bridge piles[J]. Journal of China University of Metrology, 2012, 23(1):52-56(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201201010
    [3]
    COELHO L, VIEGAS D, SANTOS J L, et al. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils[J]. Talanta, 2016, 148(1):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c00761eacfa02d4e739f82f9e3039db
    [4]
    WANG Ch, NI J Sh, WANG J Q, et al. All-fiber velocity sensors applicated in wind power generation and their fabrication process[J]. Laser Technology, 2012, 36(5):689-692(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201205029
    [5]
    LIU Sh Zh, ZHANG X, ZHENG X, et al. Application of distributed fiber Bragg grating sensor system in reactor coating layer[J]. Yunnan Electric Power, 2016, 44(1):87-89(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yndljs201601027
    [6]
    YU H Y, QIN X H, LIU Y D, et al. High-precision FBG sensor for human body temperature detection[J]. Optical Communication Technology, 2016, 40(4):33-35(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtxjs201604011
    [7]
    LIU Y Y, JIANG F X, HOU J P, et al. Research of inscription technique for multi-wavelength array fiber gratings in ribbon fiber[J]. Laser Technology, 2015, 39(4):484-487(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201504012.htm
    [8]
    ZHONG X Y, WANG Y P, QU J L, et al. High-sensitivity strain sensor based on inflated long period fiber grating[J]. Optics Letters, 2014, 39(18):5463-5466. DOI: 10.1364/OL.39.005463
    [9]
    WILLIAMS R J, KRÄMER R G, NOLTE S, et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique[J]. Optics Letters, 2013, 38(11):1918-1920. DOI: 10.1364/OL.38.001918
    [10]
    GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2):111-114. DOI: 10.1109/LPT.2012.2227701
    [11]
    NOORDEGRAAF D, SCOLARI L, LAGSAARD J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Optics Express, 2007, 15(13):7901-7912. DOI: 10.1364/OE.15.007901
    [12]
    LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2, loading as a techniquefor achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2, doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. DOI: 10.1049/el:19930796
    [13]
    NOGUCHI K, EUSUGI N, NEGISHI Y. Loss increase for optical fibers exposed to hydrogenatmosphere[J]. Journal of Lightwave Technology, 1985, 3(2):236-243. DOI: 10.1109/JLT.1985.1074175
    [14]
    ATKINS R M, LEMAIRE P J, ERDOGAN T, et al. Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses[J]. Electronics Letters, 1993, 29(14):1234-1235. DOI: 10.1049/el:19930825
    [15]
    LI J Zh, JIANG D Sh. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Material Research, 2006, 20(5):517-522(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/clyjxb200605014
    [16]
    LI Y, ZHAO H, ZHU Ch, et al. Study on fiber gratings technology[J]. Laser and Infrared, 2006, 36(s1):749-754(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b876c33510ca7cf869a6e249ce87671b
    [17]
    BISBEE D L. Splicing silica fibers with an electric arc[J]. Applied Optics, 1976, 15(3):796-798. DOI: 10.1364/AO.15.000796
    [18]
    REGO G. Fibre optic devices produced by arc discharges[J]. Journal of Optics, 2010, 12(11):113002. DOI: 10.1088/2040-8978/12/11/113002
    [19]
    ZHENG W N, ZHU L Q, ZHUNG W, et al. Influence of electrode discharge on fiber Bragg grating spectral characteristics[J]. Chinese Journal of Lasers, 2016, 43(7):0706003(in Chinese). DOI: 10.3788/CJL
  • Related Articles

    [1]HOU Tao, CAO Fengli, ZHANG Rongzhu. Effect of polarization error on combining efficiency of coherent polarization beam[J]. LASER TECHNOLOGY, 2018, 42(4): 572-576. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.026
    [2]ZHENG Biju, WEI Jinyu, JIANG Yehua, ZHANG Xijun. Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2016, 40(3): 432-435. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.028
    [3]WANG Peng, YUAN Caojin, WANG Lin, LI Chongguang. Encryption and decryption for double images based on fractional Fourier transformation[J]. LASER TECHNOLOGY, 2014, 38(4): 551-555. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.023
    [4]QIAN Guo-lin, LI Chao-ming, CHEN Xin-rong, ZOU Wen-long, WU Jian-hong. Error analysis of holographic mosaic gratings[J]. LASER TECHNOLOGY, 2013, 37(6): 747-751. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.009
    [5]YANG Ren-fu, ZHU Xiao-li, CHEN Jun-ning. Error simulation of Ronchi gratings[J]. LASER TECHNOLOGY, 2012, 36(1): 37-41. DOI: 10.3969/j.issn.1001-3806.2012.01.011
    [6]QIU Xing-wu. Microstructure and properties of laser transformation hardening layer on 1Cr18Ni9Ti[J]. LASER TECHNOLOGY, 2011, 35(3): 425-427,432. DOI: 10.3969/j.issn.1001-3806.2011.03.036
    [7]XIAO Yong-liang, LIU Qiang, YUAN Sheng, ZHOU Xin, ZHAO Xiao-jun, YANG Ze-hou, CHEN Yong, ZHOU Ding-fu. Study about decryption based on optical image encryption system in the Fresnel domain[J]. LASER TECHNOLOGY, 2009, 33(4): 433-436. DOI: 10.3969/j.issn.1001-3806.2009.04.029
    [8]CHENG Ju, SU Xian-yu. Study on error diffusion algorithm of binary encode grating[J]. LASER TECHNOLOGY, 2007, 31(3): 322-325,332.
    [9]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [10]Tan Suqing, Zhou Jin, Gao Wenqi. Amplitude vector analytics of binary optical element fabrication errors[J]. LASER TECHNOLOGY, 1996, 20(5): 308-312.

Catalog

    Article views (4) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return