Advanced Search
LIU Xiao-lan, LIU San-qiu, YANG Xiao-song. Strong Langmuir turbulence excited by laser near critical surface[J]. LASER TECHNOLOGY, 2007, 31(2): 213-216.
Citation: LIU Xiao-lan, LIU San-qiu, YANG Xiao-song. Strong Langmuir turbulence excited by laser near critical surface[J]. LASER TECHNOLOGY, 2007, 31(2): 213-216.

Strong Langmuir turbulence excited by laser near critical surface

More Information
  • Received Date: May 16, 2006
  • Revised Date: August 27, 2006
  • Published Date: April 24, 2007
  • The collapse behavior of Langmuir waves excited by laser near critical surface is numerically studied.On the basis of Zakharov equations in frame of strong turbulence,it is shown that Langmuir waves excited by transverse pumping plasmons near critical surface may collapse,leading to the formation of density cavity due to ponderomotive force.The interaction will lead to tendency of an equilibration of energy over both of transverse and Langmuir plasmons with the same frequencies near ωp,which is agreement with our numerical analysis.The value of width of the density cavity estimated is similar to the experimental result.
  • [1]
    LI X Q.Turbulent plasma physics[M].Beijing:Beijing Normal University Press,1987.133~140(in Chinese).
    [2]
    Group of the Stratagem Research on the Development of Plasma Physics.Nuclear fusion and low-temperature plasma physics[M].Beijing:Science Press,2004.55~62(in Chinese).
    [3]
    QIANG X W,TU Q F.Parameters analyzing on laser coupling with high Z materials[J].Laser Technology,2000,24(5):306~311(in Chinese).
    [4]
    ROBINSON P A.Nonlinear wave collapse and strong turbulence[J].Revieus of Modern Physics,1997,69(2):507~573.
    [5]
    ZAKHAROV V E.In handbook of plasma physics,collpse and self-focusing of Langmuir waves[M].Amsterdam:North-Holland Physics Publishing,1983.81~122.
    [6]
    ZAKHAROV V E.Collapse of Langmuir waves[J].Soviet Physics Journal of Experimental and Theoretical Physics,1972,35:908.
    [7]
    SHARMA R P,BATRA K,VERGA A D.Nonlinrea evolution of the modulational instability and chaos using one-dimensional Zakharov equations and a simplified model[J].Physics Plasmas,2005,12(2):022311-1.
    [8]
    RRUSSELL D,DUBOIS D F,HARVEY A R.Collapsing-caviton turbulence in one dimension[J].Phys Rev Lett,1986,56(8):838~841.
    [9]
    SANBONMATSU K Y,VU H X,DUBOIS D F et al.Quantitative comparison of reduced-description particle-in-cell and quasilinear-Zakharov models for parametrically excited Langmuir turbulence[J].Physics of Plasmas,2000,7(7):2824~2841.
    [10]
    LI X Q.Collapsing dynamics of plasmons[M].Beijing:Beijing Science and Technology Press,2004.126~148(in Chinese).
    [11]
    ZAKHAROV V E,MASTRIUKOV A F,SYNAKH V S.Dynamics of plasma-wave collapse in a hot plasma[J].Soviet Journal of Plasma Phsics,1975,11:339~343.
    [12]
    GOLDMAN M V,REITER G F,NICKOLSON D R.Radiation from a strongly turbulent plasma:application to electron beam-excited solar emissions[J].Physics of Fluids,1980,23(2):388~401.
    [13]
    NICKOLSON D R,GOLDMAN M V.Cascade and collapse of Langmuir waves in two dimensions[J].Physics of Fluids,1978,21(10):1766~1776.
    [14]
    PELLETIER G.Generation of a high-energy electron tail by strong Langmuir turbulence in a plasma[J].Phys Rev Lett,1982,49(11):782~785.
    [15]
    YONG P E,FOORD M E,HAMMER J H et al.Time-dependent channel formation in a laser-produced plasma[J].Phys Rev Lett,1995,76(6):1082~1085.
    [16]
    YOUNG P E,BALDIS H A,JOHNSTON T W et al.Filamentation and second-harmonic emission in laser-plasma interactions[J].Phys Rev Lett,1989,63(26):2812~2815.
    [17]
    LI X Q,MA Y H.Self-generated magnetic fields by transverse plasmon in celestial bodies[J].Astrnomy and Astrophysics,1993,270:534~542.
    [18]
    RUBENCHIK A M,ZAKHAROV V E.Handbook of plasma physics,physics of laser plasmas[M].New York:Elsevier Science,1991.335~346.
    [19]
    TSYTOVICH V N.Theory of turbulent plasma[M].New York:Consultants Bureau,1977.44.
  • Related Articles

    [1]MA Lili, NIU Mingsheng, SU Fufang, SHI Meng, WU Wendi, SONG Lianke. Polarization interference system based on single polarization parallel beam splitter[J]. LASER TECHNOLOGY, 2020, 44(3): 382-392. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.020
    [2]ZHANG Yang, CHEN Yongqian, ZHU Guangzhi, GUO Fei, ZHU Xiao. Research of the superposed pulsed Nd:YAG laser in a single beam[J]. LASER TECHNOLOGY, 2016, 40(3): 311-314. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.002
    [3]HUANG Yongchao, ZHANG Tingrong. Influence of gradient-index medium on propagation property of complex variable sinh-Gaussian beam[J]. LASER TECHNOLOGY, 2015, 39(5): 731-734. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.031
    [4]WANG Tao, MA Li-li, WU Fu-quan, SONG Lian-ke, HAO Dian-zhong. Effects of Wollaston prism to the distribution of light intensity of single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2010, 34(1): 109-111,119. DOI: 10.3969/j.issn.1001-3806.2010.01.031
    [5]WANG Tao, WU Fu-quan, MA Li-li. Effect of Rochon prism on single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2009, 33(3): 310-313.
    [6]WANG Tao, WU Fu-quan, MA Li-li, HAO Dian-zhong, SONG Lian-ke. Effect of Semarmont prism on distribution of light intensity of single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2008, 32(3): 268-271.
    [7]ZHANG Guang-yu, MA Jing, TAN Li-ying, YU Si-yuan. The research of single photon acquisition probability based on the fundamental-mode Gaussian beam[J]. LASER TECHNOLOGY, 2005, 29(5): 522-524,527.
    [8]Liu Gang, Zhang Shulian, Zhu Jun, Li Yan. Interference of two beams in a He-Ne laser with optical feedback[J]. LASER TECHNOLOGY, 2003, 27(5): 470-472.
    [9]Ji Xuan-mang, Zhang Yong-an, Liu Jin-song, AN Yu-ying. Theoretical analysis of two-beam coupling three-stage coherent optical amplification[J]. LASER TECHNOLOGY, 2001, 25(4): 305-307.
    [10]Liu Jinsong, An Yuying. Theoretical research of band-conduction model on the temperature dependence of two-beam coupling in BaTiO3crystal[J]. LASER TECHNOLOGY, 1994, 18(1): 42-45.
  • Cited by

    Periodical cited type(6)

    1. 顾怀章,罗安智,王雷,李远勋,董玮. 相变原理在纳米材料组织结构和制备研究中的应用. 广州化工. 2023(01): 17-19 .
    2. 马服辉,石佑敏,姜伯晨,王正义,梅璐,朱玉广. 石墨转化纳米金刚石相变分子动力学模拟研究. 激光技术. 2023(06): 860-865 . 本站查看
    3. 黄海芳,黄凯,谷继腾,方克明. 人造金刚石的微观结构模型. 人工晶体学报. 2020(07): 1180-1186 .
    4. 王冕,马服辉,王日红,钱磊,马文迅,任旭东. 液相脉冲激光辅助制备单壁碳纳米角的研究. 激光技术. 2019(02): 179-183 . 本站查看
    5. 申健,李乔敏,王宝成,张毅. 两种基底对中药溶液喇曼光谱增强作用的比较. 激光技术. 2019(03): 427-431 . 本站查看
    6. 姚凯丽,代兵,乔鹏飞,谭小俊,舒国阳,杨磊,刘康,韩杰才,朱嘉琦. 纳米金刚石材料的研究进展. 人工晶体学报. 2019(11): 1977-1989 .

    Other cited types(0)

Catalog

    Article views (0) PDF downloads (7) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return