Advanced Search
MA Fuhui, SHI Youmin, JIANG Bochen, WANG Zhengyi, MEI Lu, ZHU Yuguang. Study on graphite to nano-diamond phase transition simulated by molecular dynamics method[J]. LASER TECHNOLOGY, 2023, 47(6): 860-865. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.019
Citation: MA Fuhui, SHI Youmin, JIANG Bochen, WANG Zhengyi, MEI Lu, ZHU Yuguang. Study on graphite to nano-diamond phase transition simulated by molecular dynamics method[J]. LASER TECHNOLOGY, 2023, 47(6): 860-865. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.019

Study on graphite to nano-diamond phase transition simulated by molecular dynamics method

More Information
  • Received Date: October 13, 2022
  • Revised Date: December 06, 2022
  • Published Date: November 24, 2023
  • In order to discuss the influence of different laser energy on the transformation mechanism of graphite into nano-diamond in a 1-D microscale heat conduction model, optimized graphite structure was simulated by molecular dynamics method based on density functional theory(DFT). The temperature distribution of graphite surface irradiated by laser was calculated by the finite difference method. Based on the sp3 bond that can make a distinction between diamond and graphite was discussed especially, the carbon atom bonding condition was studied according to the band gap of the density of states(DOS) obtained by energy coupling. The results show that a small number of sp3 hybrid carbon atoms can be formed only when the laser energy reaches 5 J, and with the increase of laser energy, the temperature of the irradiated graphite surface in the liquid phase increases, the free electrons in the carbon atoms can be easier to move to a bonding molecular orbital, and the electronegativity of the electrons will be enhanced, which boosts the sp3 bond polarity and helps to transform sp2 bond into sp3 bond. This study has important practical significance in improving the preparation efficiency of nano-diamond under laser irradiation in the liquid phase and exploring the preparation mechanism of nano-diamond.
  • [1]
    季国顺, 张永康. 激光抛光化学气相沉积金刚石膜[J]. 激光技术, 2003, 27(2): 106-109. http://www.jgjs.net.cn/article/id/13864

    JI G Sh, ZHANG Y K. Laser polished CVD diamond films[J]. Laser Technology, 2003, 27(2): 106-109(in Chinese). http://www.jgjs.net.cn/article/id/13864
    [2]
    WILLIAMS O A, NESLADEK M, DAENEN M, et al. Growth, electronic properties and applications of nanodiamond[J]. Diamond and Related Materials, 2008, 17(7/10): 1080-1088.
    [3]
    ABBASCHIAN R, ZHU H, CLARKE C. High pressure-high temperature growth of diamond crystals using split sphere apparatus[J]. Diamond and Related Materials, 2005, 14(11/12): 1916-1919.
    [4]
    郑腊梅, 吕豫文, 唐少雄, 等. 激光法制备超细纳米金刚石的相变机理[J]. 激光技术, 2016, 40(1): 25-28. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.006

    ZHENG L M, LÜ Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by renosecond laser[J]. Laser Technology, 2016, 40(1): 25-28(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.01.006
    [5]
    HEMAWAN K W, GOU H Y, HEMLEY R J. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition[J]. Applied Physics Letters, 2015, 107(18): 181901. DOI: 10.1063/1.4934751
    [6]
    PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/8): 661-665.
    [7]
    AMANS D, CHENUS A C, LEDOUX G, et al. Nanodiamond synthesis by pulsed laser ablation in liquids[J]. Diamond & Related Materials, 2009, 18(2/3): 177-180.
    [8]
    McKINDRA T, O'KEEFE M J, XIE Zh Q, et al. Characterization of diamond thin films deposited by a CO2 laser-assisted combustion-flame method[J]. Materials Characterization, 2010, 61(6): 661-667. DOI: 10.1016/j.matchar.2010.03.011
    [9]
    REN X D, YANG H M, ZHENG L M, et al. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure[J]. Applied Physics Letters, 2014, 105(2): 021908. DOI: 10.1063/1.4890527
    [10]
    ZIPOLI F, BERNASCONI M, MARTOŇÁK R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited[J]. European Physical Journal, 2004, B39(1): 41-47.
    [11]
    王金斌, 杨国伟. 脉冲激光诱导液-固界面反应合成金刚石纳米晶中的结构相变模型[J]. 高压物理学报, 1999, 13(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL902.011.htm

    WANG J B, YANG G W. Model of stracture transformation in synthesizing nano-crystalline diamond with pulsed-laser induced liquid-solid interface reaction[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 147-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL902.011.htm
    [12]
    THORSLUND T, KAHLEN F J, KAR A. Temperatures, pressures and stresses during laser shock processing[J]. Optics and Lasers in Engineering, 2003, 39(1): 51-71. DOI: 10.1016/S0143-8166(02)00040-4
    [13]
    周素素, 王新兵, 尹培琪, 等. 脉冲激光诱导石墨等离子体羽辉特性研究[J]. 激光技术, 2018, 42(6): 796-800(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2018.06.013

    ZHOU S S, WANG X B, YIN P Q, et al. Study on characteristics of graphite plume induced by pulsed laser[J]. Laser Technology, 2018, 42(6): 796-800. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.013
    [14]
    CATTANEO C. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation[J]. Comptes Rendus, 1958, 247(4): 431-433.
    [15]
    VERNOTTE P. Some possible complications in the phenomena of thermal conduction[J]. Compte Rendus, 1961, 252(1): 2190-2191.
    [16]
    JOSEPH D D, PREZIOSI L. Addendum to the paper "Heat waves"[J]. Review of Modern Physics, 1990, 62(2): 375-394.
    [17]
    DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277.
    [18]
    唐彦琴, 顾国华, 钱惟贤, 等. 四象限探测器基于高斯分布的激光光斑中心定位算法[J]. 红外与激光工程, 2017, 46(2): 0206003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201702010.htm

    TANG Y Q, GU G H, QIAN W X, et al. Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution[J]. Infrared and Laser Engineering, 2017, 46(2): 0206003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201702010.htm
    [19]
    ALLOUIS C, ROSANO F, BERETTA F, et al. A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence[J]. Measurement Science and Technology, 2002, 13(3): 401-410.
    [20]
    TOMLINSON E L, HOWELL D, JONES A P, et al. Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa)[J]. Diamond and Related Materials, 2011, 20(1): 11-17.
    [21]
    LI X W, KE P, LEE K R, et al. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J]. Thin Solid Films, 2014, 552: 136-140.
    [22]
    LI X W, KE P, ZHENG H, et al. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study[J]. Applied Surface Science, 2013, 273: 670-675.
    [23]
    REN X D, MA F H, WANG R H, et al. Morphology-selective preparation and formation mechanism of few-layer graphene on Cu substrate by liquid-phase pulsed laser ablation[J]. AIP Advances, 2019, 9(12): 125004.
    [24]
    NYABADZA A, VAZQUEZ M, FITZPATRICK B, et al. Effect of liquid medium and laser processing parameters on the fabrication of carbon nanoparticles via pulsed laser ablation in liquid towards paper electronics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128151.
    [25]
    MARKS N A, McKENZIE D R, PAILTHORPE B A, et al. Microscopic structure of tetrahedral amorphous carbon[J]. Physical Review Letters, 1996, 76(5): 768.
    [26]
    SUN J G, WU S J, YANG S Z, et al. Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals[J]. Applied Catalysis B: Environmental, 2018, 221: 467-472.
  • Related Articles

    [1]LU Jing, SUN Wenlei, CHEN Zihao, XING Xuefeng, YANG Kaixin, ZHOU Haonan, LIU Deming. Experimental validation and numerical simulation of laser cladding of H13 steel on hot work mold surfaces[J]. LASER TECHNOLOGY, 2023, 47(4): 558-564. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.018
    [2]SONG Xinhua, XIU Tengfei, JIN Xiangzhong, YUAN Jiang, SONG Bin. Numerical simulation of 3-D flow field on laser-assisted heating friction stir welding of steel[J]. LASER TECHNOLOGY, 2016, 40(3): 353-357. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.011
    [3]XU Cheng-wei, YAO Mei, XU Zhen-ling, ZHANG Wen-pan, HU Xin, WANG Jun, LIU Yan-fang. Simulation and measurement of scattering laser energy distribution in extinctive chambers[J]. LASER TECHNOLOGY, 2012, 36(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2012.01.037
    [4]CHEN Gen-yu, ZHANG Jun, ZHANG Yi, ZHAO Zhi. Study on method of measuring temperature distribution of plasma[J]. LASER TECHNOLOGY, 2008, 32(2): 137-139.
    [5]GUO Yun-xiao, GONG Ma-li, XUE Hai-zhong, LI Chen, YAN Ping, LIU Qiang, CHEN Gang. Temperature analysis with nonuniform heat generation in the side-pumping laser rod[J]. LASER TECHNOLOGY, 2007, 31(3): 238-241.
    [6]CHEN Ji-xin, SUI Zhan, Cheng Fu-shen, LIU Zhi-qiang. Thermal effect of Yb3+-doped double clad fiber laser[J]. LASER TECHNOLOGY, 2006, 30(3): 268-270.
    [7]Fang Aiping, Lou Qihong, Dong Jingxing, Wei Yunron, Li Tiejun. Theoretical study on the temperature characteristics of LD side-pumped Nd:YAG laser slab[J]. LASER TECHNOLOGY, 2003, 27(3): 248-250.
    [8]Shen Hongyuan, Zhang Ge, Huang Chenghui, Wei Min, Chen Zhenqiang. Temperature distribution of monocline laser crystal in operation process[J]. LASER TECHNOLOGY, 2002, 26(4): 244-245,249.
    [9]Zhai Qun, Lü Baida, Yang Chenglong. Two dimensional temperature and stress distributions in a diode side pumped slab laser medium[J]. LASER TECHNOLOGY, 1998, 22(4): 231-235.
    [10]Zhao Jianrong, Li Chunjin, Yang Shirun. Measurements of temperature distribution in a counterflow diffusion flame by USED CARS[J]. LASER TECHNOLOGY, 1997, 21(4): 218-222.

Catalog

    Article views (5) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return