Advanced Search
GU Xiaofeng, ZHONG Rongke, MA Xinyu, LUO Junwen, XU Guoqing, WU Bo. Study on high sensitivity aerosol particle spectrometer[J]. LASER TECHNOLOGY, 2025, 49(2): 258-262. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.016
Citation: GU Xiaofeng, ZHONG Rongke, MA Xinyu, LUO Junwen, XU Guoqing, WU Bo. Study on high sensitivity aerosol particle spectrometer[J]. LASER TECHNOLOGY, 2025, 49(2): 258-262. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.016

Study on high sensitivity aerosol particle spectrometer

More Information
  • Received Date: January 22, 2024
  • Revised Date: March 24, 2024
  • In order to enhance the detection sensitivity of aerosol particle spectrometers, a method that two photodetectors were used to separately detect the side-scattered light of small particles and the forward-scattered light of large particles was employed. A miniaturized high-sensitivity aerosol particle spectrometer based on light scattering was designed and developed. Polystyrene standard microspheres were used to test the signal response of the particle spectrometer. Comparative observations were conducted with similar foreign products for 24 h, showing good concentration correlation and consistent trend between the two instruments during the test period. The results indicate that, the developed aerosol particle spectrometer has a minimum resolution particle size interval of 20 nm, and it is characterized by small size and light weight. This study provides important reference for aerosol detection using small unmanned aerial vehicles.

  • [1]
    RAMANATHAN V, CRUTZEN P J, KIEHL J T, et al. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549): 2119-2124. DOI: 10.1126/science.1064034
    [2]
    ALBRECHT B A. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245(4923): 1227-1230. DOI: 10.1126/science.245.4923.1227
    [3]
    张泽中, 袁亮, 刘璇, 等. 成都不同季节亚微米气溶胶粒径谱分布特征分析. 环境科学学报, 2023, 43(6): 27-38.

    ZHANG Z Zh, YUAN L, LIU X, et al. Analysis on characteristics of submicron aerosol size distribution in different seasons in Chengdu[J]. Acta Scientiae Circumstantiae, 2023, 43(6): 27-38 (in Chinese).
    [4]
    AMARAL S, DE CARVALHO J, COSTA M, et al. An overview of particulate matter measurement instruments. Atmosphere, 2015, 6(9): 1327-1345. DOI: 10.3390/atmos6091327
    [5]
    WATSON J G, CHOW J C, SODEMAN D A, et al. Comparison of four scanning mobility particle sizers at the Fresno Supersite. Particuology, 2011, 9(3): 204-209. DOI: 10.1016/j.partic.2011.03.002
    [6]
    GAO R S, PERRING A E, THORNBERRY T D, et al. A high-sensitivity low-cost optical particle counter design. Aerosol Science and Technology, 2013, 47(2): 137-145. DOI: 10.1080/02786826.2012.733039
    [7]
    ROSENBERG P D, DEAN A R, WILLIAMS P I, et al. Particle sizing calibration with refractive index correction for light scattering optical particle counters and impacts upon PCASP and CDP data collected during the Fennec campaign. Atmospheric Measurement Techniques, 2012, 5(5): 1147-1163. DOI: 10.5194/amt-5-1147-2012
    [8]
    王志永, 蔡小舒, 徐呈泽, 等. 动态光散射图像法测量纳米颗粒粒度研究. 光学学报, 2014, 34(1): 0129002.

    WANG Zh Y, CAI X Sh, XU Ch Z, et al. Nanoparticle sizing by image processing with dynamic light scattering. Acta Optica Sinica, 2014, 34(1): 0129002(in Chinese).
    [9]
    卞保民, 贺安之, 吴东楼. 0.1μm激光尘埃粒子计数器中点光源大立体角反射成像弥散斑及其处理. 光电子·激光, 1997, 8(4): 8-12.

    BIAN B M, HE A Zh, WU D L. Reflexive speckle image of the point light source in the laser airborne particle counter for 0.1 μm and its processing. Journal of Optoelectronics·Laser, 1997, 8(4): 8-12(in Chinese).
    [10]
    GU F, YANG J, BIAN B M, et al. A model for aerosol massconcentra-tion using an optical particle counter. Chinese Optics Letters, 2008, 6(3): 214-217. DOI: 10.3788/COL20080603.0214
    [11]
    YAN Zh A, YANG J, BIAN B M, et al. The model of random signals generated by optical particle counter and the instrument improvement. Proceedings of the SPIE, 2013, 8691: 86911K. DOI: 10.1117/12.2014315
    [12]
    HAN J, LIU X, JIANG M, et al. An improved on-line measurement method of particulate matter concentration using tri-wavelength laser light scattering. Fuel, 2021, 302: 121197. DOI: 10.1016/j.fuel.2021.121197
    [13]
    陈慈伟, 周宾, 祝仰坤, 等. 颗粒物与气体浓度同步测量方法研究. 光学学报, 2019, 39(6): 0612008.

    CHEN C W, ZHOU B, ZHU Y K, et al. Synchronous measurement methods for particulate matter and gas concentrations. Acta Optica Sinica, 2019, 39(6): 0612008(in Chinese).
    [14]
    杨家军. 基于光散射的端云一体化尘埃粒子计数系统设计. 杭州: 中国计量大学, 2021: 23-80.

    YANG J J. Design of end-cloud integrated dust particle counting system based on light scattering. Hangzhou: China Jiliang University, 2021: 23-80(in Chinese).
    [15]
    邹丽新, 钱霖, 朱桂荣, 等. 光学尘埃粒子计数器自动校正的实现. 光学技术, 2005, 31(3): 413-414. DOI: 10.3321/j.issn:1002-1582.2005.03.019

    ZOU L X, QIAN L, ZHU G R, et al. Auto correction of dust particle counter. Optical Technique, 2005, 31(3): 413-414 (in Chinese). DOI: 10.3321/j.issn:1002-1582.2005.03.019
    [16]
    牟彤彤, 申晋, 李鑫强, 等. 流动气溶胶动态光散射测量中的流速限制. 光学学报, 2021, 41(14): 1429001.

    MOU T T, SHEN J, LI X Q, et al. Velocity limitation in dynamic light scattering measurement for flowing aerosols. Acta Optica Sinica, 2021, 41(14): 1429001(in Chinese).
    [17]
    史晓丁, 伍波, 樊冬. 基于前向Mie散射的激光雾滴谱仪. 激光杂志, 2020, 41(4): 116-119.

    SHI X D, WU B, FAN D. Laser fog droplet spectrometer based on forward Mie scattering. Laser Journal, 2020, 41(4): 116-119(in Chinese).
    [18]
    史晓丁, 冯力天, 刘英, 等. 激光云粒子成像探测仪研制. 激光技术, 2023, 47(1): 67-72. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.010

    SHI X D, FENG L T, LIU Y, et al. Laser cloud particle imaging probe. Laser Technology, 2023, 47(1): 67-72. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.010
    [19]
    GIRDWOOD J, SMITH H, STANLEY W, et al. Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter. Atmospheric Measurement Techniques, 2020, 13(12): 6613-6630.
    [20]
    ALVARADO M, GONZALEZ F, ERSKINE P, et al. A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle. Sensors, 2017, 17(2): 343.
    [21]
    GIRDWOOD J, STANLEY W, STOPFORD C, et al. Simulation and field campaign evaluation of an optical particle counter on a fixed-wing UAV. Atmospheric Measurement Techniques, 2022, 15(7): 2061-2076.
  • Related Articles

    [1]HE Xiangjun, LI Luyao, TANG Chenghao, TANG Chengxin, WU Bo. Calibration measurement and inversion of standard particle count for droplet spectrometer[J]. LASER TECHNOLOGY, 2024, 48(2): 255-260. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.017
    [2]SUO Wenkai, HU Wengang, ZHANG Yan, ZHANG Biao. Research of visual positioning method during UAV autonomous landing process[J]. LASER TECHNOLOGY, 2019, 43(5): 691-696. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.020
    [3]MIAO Xin, ZHANG Debin, SONG Yuhua, ZHANG Xinxing, MEI Yangni, YANG Wenran, XIONG Jinfei, SHAO Haijun. UAV precise recycling technology based on laser terminal guidance[J]. LASER TECHNOLOGY, 2018, 42(5): 687-691. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.019
    [4]LI Zhipeng, ZHANG Yan'ge, AI Yong, FENG Xiaoyun. Laser tracking and wireless power supply system for unmanned aerial vehicles[J]. LASER TECHNOLOGY, 2018, 42(3): 306-310. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.004
    [5]LIU Ming-kun, TANG Hai-bo, FANG Yan-li, ZHANG Shu-quan, LIU Dong, WANG Hua-ming. Wear resistance of laser clad TiC/Ti-Ti2 Co coating on titanium alloy[J]. LASER TECHNOLOGY, 2011, 35(4): 444-447,452. DOI: 10.3969/j.issn.1001-3806.2011.04.003
    [6]PENG Gang, BIAN Bao-min, LU Jian. Probability density function of signal amplitude in laser airborne particle counter[J]. LASER TECHNOLOGY, 2010, 34(1): 63-66. DOI: 10.3969/j.issn.1001-3806.2010.01.018
    [7]YANG Juan, GU Fang, BIAN Bao-min, LU Jian. The study of signal transmission characteristic in airborne particle counter[J]. LASER TECHNOLOGY, 2008, 32(3): 255-258.
    [8]GU Fang, YANG Juan, BIAN Bao-min, HE An-zhi. Measurement of particle mass concentration using particle counter method[J]. LASER TECHNOLOGY, 2007, 31(4): 360-363.
    [9]Wu Wan-liang, Huang Wen-rong, . Microstructure of laser clad Ti+TiC powders on Ti-6Al-4V alloy substrate[J]. LASER TECHNOLOGY, 2003, 27(4): 307-310.
    [10]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.

Catalog

    Article views (9) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return