Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 47 Issue 3
May  2023
Article Contents
Turn off MathJax

Citation:

Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers

  • Corresponding author: XU Lixin, xulixin@ustc.edu.cn
  • Received Date: 2022-04-15
    Accepted Date: 2022-05-10
  • In order to obtain mode-locked pulses with different center wavelengths, a compact tunable mode-locked laser was built by using Sagnac loop filter with polarization maintaining fiber and semiconductor saturable absorber mirror. And the experimental verification was carried out. The results show that, the laser has a good wavelength tuning function when it operates in a single wavelength mode locked state, and its output wavelength is continuously adjustable in the range of 1031 nm to 1040 nm. The laser can also output a stable dual wavelength asynchronous pulse sequence, with the interval between the two wavelengths about 10 nm, and the bandwidth of each wavelength can be adjusted by the polarization controller. This research can provide a design scheme for building a compact tunable laser.
  • 加载中
  • [1]

    LI Z, HEIDT A M, SIMAKOV N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window[J]. Optics Express, 2013, 21(22): 26450-26455. doi: 10.1364/OE.21.026450
    [2]

    FU B, GUI L, LI X, et al. Generation of 35 nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1447-1449. doi: 10.1109/LPT.2013.2264456
    [3]

    VOGLER N, HEUKE S, BOCKLITZ T W, et al. Multimodal imaging spectroscopy of tissue[J]. Annual Review of Analytical Chemistry, 2015, 8: 359-387. doi: 10.1146/annurev-anchem-071114-040352
    [4]

    FU B, POPA D, ZHAO Z, et al. Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser[J]. Applied Physics Letters, 2018, 113(19): 193102. doi: 10.1063/1.5047492
    [5]

    BEWERSDORF J, HELL S W. Picosecond pulsed two-photon ima- ging with repetition rates of 200 and 400 MHz[J]. Journal of Microscopy, 1998, 191(1): 28-38. doi: 10.1046/j.1365-2818.1998.00379.x
    [6]

    LIN H, GUO C, RUAN S, et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5): 1501807. doi: 10.1109/JPHOT.2013.2281977
    [7]

    ZHANG Z X, XU Z W, ZHANG L. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter[J]. Optics Express, 2012, 20(24): 26736-26742. doi: 10.1364/OE.20.026736
    [8]

    XING L, TONG H T, SAINI T S, et al. Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect[J]. Optics Express, 2019, 27(10): 14635-14647. doi: 10.1364/OE.27.014635
    [9]

    REN F, ZHANG J, NIU J, et al. A switchable multi-wavelength EDFL using cascaded Sagnac fiber loops with mode differential delay line[J]. Optik, 2021, 248: 168182. doi: 10.1016/j.ijleo.2021.168182
    [10]

    PENG Y, ZHANG A, PAN H, et al. Tunable and switchable multi-wavelength actively Q-switched fiber laser based on electro-optic modulator and an improved Sagnac filter[J]. Optics & Laser Technology, 2022, 150: 108001.
    [11] 朱可, 裴丽, 赵琦, 等. 采用双Sagnac环滤波器的可切换多波长光纤激光器. 红外与激光工程, 2020, 49(11): 20200047.

    ZHU K, PEI L, ZHAO Q, et al. Switchable multi-wavelength fiber laser utilizing double Sagnac loop filter[J]. Infrared and Laser Engineering, 2020, 49(11): 20200047(in Chinese).
    [12]

    CHEN E, LIU S, LU P, et al. Tunable 2 μm fiber laser utilizing a modified sagnac filter incorporating cascaded polarization maintaining fibers[J]. IEEE Photonics Journal, 2020, 12(1): 1-7.
    [13]

    TIAN J, ZUO Y, HOU M, et al. Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure[J]. Optics Express, 2021, 29(6): 8763-8769. doi: 10.1364/OE.419306
    [14]

    LI M, ZOU X, WU J, et al. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter[J]. Applied Optics, 2015, 54(29): 8800-8803. doi: 10.1364/AO.54.008800
    [15]

    ZHOU J, YAN P, ZHANG H, et al. All-fiber mode-locked ring laser with a Sagnac filter[J]. IEEE Photonics Technology Letters, 2011, 23(18): 1301-1303. doi: 10.1109/LPT.2011.2159833
    [16]

    XING L, TONG H T, SAINI T S, et al. Switchable dual-wavelength mode-locked fiber laser using Saganc loop mirror[J]. Optics Communications, 2020, 463: 125457. doi: 10.1016/j.optcom.2020.125457
    [17]

    LI W, YIN Z, QIU J, et al. Swtichable and tunable multi-wavelength dissipative soliton Yb-doped fiber laser based on tunable Lyot-Sagnac filter[C]//2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology. New York, USA: IEEE, 2014: 489-491.
    [18]

    LI T, YAN F, CHENG D, et al. Switchable multi-wavelength thulium-doped fiber laser using a cascaded or two-segment Sagnac loop filter[J]. IEEE Access, 2022, 10: 13026-13037. doi: 10.1109/ACCESS.2022.3146414
    [19]

    ZHAO X, HU G, ZHAO B, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Optics Express, 2016, 24(19): 21833-21845. doi: 10.1364/OE.24.021833
    [20]

    FELLINGER J, MAYER A S, WINKLER G, et al. Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb ∶fiber laser[J]. Optics Express, 2019, 27(20): 28062-28074. doi: 10.1364/OE.27.028062
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article views(2886) PDF downloads(24) Cited by()

Proportional views

Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers

    Corresponding author: XU Lixin, xulixin@ustc.edu.cn
  • 1. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
  • 2. Anhui Key Laboratory of Optoelectronic Science and Technology, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230026, China

Abstract: In order to obtain mode-locked pulses with different center wavelengths, a compact tunable mode-locked laser was built by using Sagnac loop filter with polarization maintaining fiber and semiconductor saturable absorber mirror. And the experimental verification was carried out. The results show that, the laser has a good wavelength tuning function when it operates in a single wavelength mode locked state, and its output wavelength is continuously adjustable in the range of 1031 nm to 1040 nm. The laser can also output a stable dual wavelength asynchronous pulse sequence, with the interval between the two wavelengths about 10 nm, and the bandwidth of each wavelength can be adjusted by the polarization controller. This research can provide a design scheme for building a compact tunable laser.

引言
  • 波长可调谐的锁模光纤激光器在光谱学、光通信和传感等领域具有重大的应用[1-5],是近几年的研究热点。目前,采用具有波长选择性的滤波器件和有非线性可饱和吸收效应的锁模器件来搭建波长可调谐的激光器是最常见且有效的方法。在滤波器件中,全光纤的梳状滤波器由于结构紧凑、成本低以及调谐范围大等优点被广大研究者所关注。基于光纤双折射的Lyot滤波器在很早以前就已用于搭建波长可调谐的激光器[6-7], 并成功实现了多波长输出。为了提高激光器的抗干扰性,有研究人员提出除Lyot滤波器外,其余全部采用保偏光纤来搭建波长可调谐的激光器[8]。由于该滤波器的滤波特性与信号光的偏振态相关,激光器仍然容易受到外界环境的干扰。光纤Sagnac滤波器是另一种常见的梳状滤波器[9-13],其滤波特性与偏振态无关,且采用不同长度或不同数量的保偏光纤可以改变该滤波器的调制周期,在波长可调谐的激光器和双波长锁模激光器等领域具有巨大的应用潜力[14-16]。然而,利用两段保偏光纤的Sagnac环滤波器实现双波长异步脉冲输出的激光器却很少报道。

    本文作者利用带有两段保偏光纤的Sagnac环滤波器和具有锁模功能的半导体可饱和吸收镜设计并搭建了结构紧凑的可调谐锁模激光器。通过调节激光器的参数(如抽运功率、腔内偏振控制器的状态),激光器既可以工作在单波长锁模状态,也可以工作在双波长锁模状态。当激光器实现单波长输出时,适当地调节腔内的参数,可以改变滤波器的透射谱线,最终实现波长调谐功能;当激光器工作在双波长状态时,两波长由于色散效应,在腔内有不同的群速度。该激光器在异步采样、双光梳测距以及双光梳光谱学等领域有着广泛的应用前景。

1.   实验结构和原理
  • 图 1是激光器的实验装置图。激光器为直腔结构,一个中心波长为974 nm、最大输出功率为823 mW的激光二极管(laser diode, LD)作为抽运源。工作波长为1020 nm~1080 nm的波分复用器(wavelength division multiplexer, WDM)将抽运光耦合到长度为80 cm的掺镱光纤(Yb501)中。一个90 ∶10的耦合器(optical coupler, OC)OC2提取腔内10%的能量作为激光器的输出,掺镱光纤和耦合器OC2之间放置一偏振控制器(polarization controller, PC)PC3以协助激光器锁模,左右两端的腔镜分别为Sagnac环反射镜和半导体可饱和吸收镜(semiconductor saturable absorber mirror, SESAM), 总腔长为7.5 m。其中Sagnac反射镜还起着滤波器的功能,它由一个50 ∶50的耦合器OC1、两段长度分别为7 cm和17 cm的保偏光纤(polarization maintaining fiber, PMF)以及两个偏振控制器PC1、PC2组成,其透射谱的周期可以写成如下形式[17-18]

    Figure 1.  Experimental setup of the laser

    式中,λ为信号光的波长,Δn为保偏光纤的双折射率差,在实验中,其值约为4×10-4L1L2分别为PMF1和PMF2的长度。

    图 2是用自发辐射光源在不同PC状态下测得的透射谱线。由图 2可知,滤波谱线的谷值位置可以通过调节腔内PC调谐,而且它们周期相同,约为12 nm,与理论值11 nm相近。换句话说,可通过调节PC来实现波长的调谐功能。

    Figure 2.  Measured typical transmission spectra

2.   结果和分析
  • 当抽运功率为96 mW时,通过调节腔内的PC1和PC2,激光器可以工作在稳定的单波长锁模状态,此时输出功率为2.3 mW。图 3a是激光器典型的光谱图。输出光谱具有陡峭的上升沿和下降沿,其中心波长为1033.5 nm,3 dB带宽为2.9 nm。图 3b是示波器轨迹图。相领脉冲的间隔为75 ns,和激光器的总腔长7.5 m相匹配。示波器轨迹图中,各脉冲的强度基本相同,并没有没明显的起伏,表明激光器工作在稳定的锁模状态下。

    Figure 3.  a—optical spectrum  b—pulse trace

    为了进一步探究激光器的输出特性, 测量了不同抽运功率下的光谱,如图 4a所示。由于SESAM的损伤阈值较低,为保证激光器正常运行,实验中的抽运功率最大值为146 mW。由图可知,当抽运功率从96 mW增加到146 mW时,输出光谱的宽度有略微的展宽,但其形状和中心波长的位置并没有发生明显的变化,这个现象是由于非线性效应导致光谱展宽引起的。此外,还记录了不同抽运功率时的输出功率,如图 4b所示。当抽运功率从96 mW增加到146 mW时,输出功率从2.3 mW增加到3.6 mW。需要指出的是,在抽运功率变化的过程中,激光器始终保持锁模状态。图 4c是中心波长在1033.5 nm处光谱随时间的变化图。可以看出,谱线的中心波长和带宽在1 h内并没有明显的扰动,说明在无外界环境干扰的情况下,激光器可以稳定地运行。另外,通过仔细调节腔内的PC1和PC2,可以获得中心波长可调谐的单波长锁模脉冲,如图 4d所示,激光器的输出波长可从1031 nm连续调谐至1040 nm。值得一提的是,在无外界环境干扰的情况下,不同中心波长的谱线也能长时间维持稳定。

    Figure 4.  Characteristic of single wavelength

    仔细调节腔内的偏振控制器,当腔内不同中心波长的净增益相近时,可以同时在谐振腔内起振,并获得多波长输出。图 5a所示的是不同状态下的双波长输出,它们的中心波长分别为1032 nm、1042 nm和1030 nm、1041 nm。值得一提的是,在调节偏振控制器时,谱线的带宽也会发生变化。当获得的双波长分别为1032 nm和1042 nm时,谱线的半峰全宽分别为3.5 nm和2.1 nm;而当输出的双波长分别为1030 nm和1041 nm时,谱线的半峰全宽分别为2.1 nm和3.1 nm。这种现象可能是因为不同中心波长的信号光对应的输出功率不同导致的。图 5b是双波长分别为1032 nm和1042 nm的示波器轨迹图。与单波长锁模的示波器轨迹图不同,在双波长锁模的示波器轨迹图中,有两套间隔约为75 ns的脉冲序列。在不同时间下,这两套脉冲间隔也不相同,如在图 5b中(从上往下),两套脉冲序列之间的间隔越来越小,甚至在某一时刻两脉冲完全重合。这些现象表明, 这两套脉冲的重复频率是有差异的,即实验中获得的双波长为异步脉冲。这种现象是由色散引起的,不同波长的信号光在腔内的群速度不同,最终导致它们的重复频率产生差异。这种双波长的异步脉冲在双光梳技术中具有重大的应用价值[19-20]

    Figure 5.  a—spectrum of dual-wavelength  b—pulse trace at different time

    为了探究双波长光谱的稳定性,记录了激光器1 h内的光谱变化情况,如图 6所示。在实验室条件下,两波长的光谱形状、强度、位置以及带宽几乎相同,表明激光器在1 h内是稳定运行的,具有较高的稳定性。

    Figure 6.  Spectra of dual-wavelength in 1 h

3.   结论
  • 本文中采用Sagnac环滤波器搭建了结构紧凑的锁模激光器。该激光器不仅能够获得连续可调的单波长脉冲序列,还可以获得双波长的异步脉冲序列。这类激光器在双光梳技术、光通信以及光传感领域有巨大的应用潜力。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return