Advanced Search
LIN Jiaqiang, DAI Chuansheng, YAO Peijun, XU Lixin. Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers[J]. LASER TECHNOLOGY, 2023, 47(3): 301-304. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.002
Citation: LIN Jiaqiang, DAI Chuansheng, YAO Peijun, XU Lixin. Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers[J]. LASER TECHNOLOGY, 2023, 47(3): 301-304. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.002

Tunable single-wavelength and dual-wavelength ytterbium-doped mode-locked fiber lasers

More Information
  • Received Date: April 14, 2022
  • Revised Date: May 09, 2022
  • Published Date: May 24, 2023
  • In order to obtain mode-locked pulses with different center wavelengths, a compact tunable mode-locked laser was built by using Sagnac loop filter with polarization maintaining fiber and semiconductor saturable absorber mirror. And the experimental verification was carried out. The results show that, the laser has a good wavelength tuning function when it operates in a single wavelength mode locked state, and its output wavelength is continuously adjustable in the range of 1031 nm to 1040 nm. The laser can also output a stable dual wavelength asynchronous pulse sequence, with the interval between the two wavelengths about 10 nm, and the bandwidth of each wavelength can be adjusted by the polarization controller. This research can provide a design scheme for building a compact tunable laser.
  • [1]
    LI Z, HEIDT A M, SIMAKOV N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800-2050 nm window[J]. Optics Express, 2013, 21(22): 26450-26455. DOI: 10.1364/OE.21.026450
    [2]
    FU B, GUI L, LI X, et al. Generation of 35 nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1447-1449. DOI: 10.1109/LPT.2013.2264456
    [3]
    VOGLER N, HEUKE S, BOCKLITZ T W, et al. Multimodal imaging spectroscopy of tissue[J]. Annual Review of Analytical Chemistry, 2015, 8: 359-387. DOI: 10.1146/annurev-anchem-071114-040352
    [4]
    FU B, POPA D, ZHAO Z, et al. Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser[J]. Applied Physics Letters, 2018, 113(19): 193102. DOI: 10.1063/1.5047492
    [5]
    BEWERSDORF J, HELL S W. Picosecond pulsed two-photon ima- ging with repetition rates of 200 and 400 MHz[J]. Journal of Microscopy, 1998, 191(1): 28-38. DOI: 10.1046/j.1365-2818.1998.00379.x
    [6]
    LIN H, GUO C, RUAN S, et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5): 1501807. DOI: 10.1109/JPHOT.2013.2281977
    [7]
    ZHANG Z X, XU Z W, ZHANG L. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter[J]. Optics Express, 2012, 20(24): 26736-26742. DOI: 10.1364/OE.20.026736
    [8]
    XING L, TONG H T, SAINI T S, et al. Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect[J]. Optics Express, 2019, 27(10): 14635-14647. DOI: 10.1364/OE.27.014635
    [9]
    REN F, ZHANG J, NIU J, et al. A switchable multi-wavelength EDFL using cascaded Sagnac fiber loops with mode differential delay line[J]. Optik, 2021, 248: 168182. DOI: 10.1016/j.ijleo.2021.168182
    [10]
    PENG Y, ZHANG A, PAN H, et al. Tunable and switchable multi-wavelength actively Q-switched fiber laser based on electro-optic modulator and an improved Sagnac filter[J]. Optics & Laser Technology, 2022, 150: 108001.
    [11]
    朱可, 裴丽, 赵琦, 等. 采用双Sagnac环滤波器的可切换多波长光纤激光器. 红外与激光工程, 2020, 49(11): 20200047. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202011020.htm

    ZHU K, PEI L, ZHAO Q, et al. Switchable multi-wavelength fiber laser utilizing double Sagnac loop filter[J]. Infrared and Laser Engineering, 2020, 49(11): 20200047(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202011020.htm
    [12]
    CHEN E, LIU S, LU P, et al. Tunable 2 μm fiber laser utilizing a modified sagnac filter incorporating cascaded polarization maintaining fibers[J]. IEEE Photonics Journal, 2020, 12(1): 1-7.
    [13]
    TIAN J, ZUO Y, HOU M, et al. Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure[J]. Optics Express, 2021, 29(6): 8763-8769. DOI: 10.1364/OE.419306
    [14]
    LI M, ZOU X, WU J, et al. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter[J]. Applied Optics, 2015, 54(29): 8800-8803. DOI: 10.1364/AO.54.008800
    [15]
    ZHOU J, YAN P, ZHANG H, et al. All-fiber mode-locked ring laser with a Sagnac filter[J]. IEEE Photonics Technology Letters, 2011, 23(18): 1301-1303. DOI: 10.1109/LPT.2011.2159833
    [16]
    XING L, TONG H T, SAINI T S, et al. Switchable dual-wavelength mode-locked fiber laser using Saganc loop mirror[J]. Optics Communications, 2020, 463: 125457. DOI: 10.1016/j.optcom.2020.125457
    [17]
    LI W, YIN Z, QIU J, et al. Swtichable and tunable multi-wavelength dissipative soliton Yb-doped fiber laser based on tunable Lyot-Sagnac filter[C]//2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology. New York, USA: IEEE, 2014: 489-491.
    [18]
    LI T, YAN F, CHENG D, et al. Switchable multi-wavelength thulium-doped fiber laser using a cascaded or two-segment Sagnac loop filter[J]. IEEE Access, 2022, 10: 13026-13037. DOI: 10.1109/ACCESS.2022.3146414
    [19]
    ZHAO X, HU G, ZHAO B, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Optics Express, 2016, 24(19): 21833-21845. DOI: 10.1364/OE.24.021833
    [20]
    FELLINGER J, MAYER A S, WINKLER G, et al. Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb ∶fiber laser[J]. Optics Express, 2019, 27(20): 28062-28074. DOI: 10.1364/OE.27.028062
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (7) PDF downloads (12) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return