Advanced Search
XU Sendong. Study on propagation properties of vortex Airy beams through negative index medium[J]. LASER TECHNOLOGY, 2022, 46(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.022
Citation: XU Sendong. Study on propagation properties of vortex Airy beams through negative index medium[J]. LASER TECHNOLOGY, 2022, 46(6): 850-854. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.022

Study on propagation properties of vortex Airy beams through negative index medium

More Information
  • Received Date: September 21, 2021
  • Revised Date: October 17, 2021
  • Published Date: November 24, 2022
  • In order to investigate the propagation dynamics of vortex Airy beams passing through the negative index medium(NIM), the propagation dynamics equation was obtained based on the Collins formula. The intensity, vortex, and phase were studied by using the equation. The results show that it is possible to controlling the center lobe, superimposition position, and the intensity by adjusting the parameters of the negative index medium. All these properties of the propagation of the beam in NIM may have applications in areas such as optical micromanipulation and optical sorting.
  • [1]
    BERRY M V, BALAZS N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267. DOI: 10.1119/1.11855
    [2]
    SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-980. DOI: 10.1364/OL.32.000979
    [3]
    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99: 213901. DOI: 10.1103/PhysRevLett.99.213901
    [4]
    YUE Y Y, XIAO H, WANG Z X, et al. Research on diffraction and self-acceleration of Airy beam[J]. Acta Physica Sinica, 2013, 62(4): 044205(in Chinese). DOI: 10.7498/aps.62.044205
    [5]
    KE X Zh, WANG S. Evolution of the intensity of partially coherent Airy beam in atmospheric turbulence[J]. Acta Photonica Sinica, 2017, 46(7): 0701001(in Chinese). DOI: 10.3788/gzxb20174607.0701001
    [6]
    WANG S. Evolution of the intensity and experimental study of partially coherent Airy beam in atmospheric turbulence[D]. Xi'an: Xi'an University of Technology, 2017: 5-8(in Chinese).
    [7]
    QIAN Y X, MAO H X. Generation and propagation characteristics of generalized Airy beams with tunable trajectories[J]. Acta Photonica Sinica, 2018, 47(2): 0226001(in Chinese). DOI: 10.3788/gzxb20184702.0226001
    [8]
    JIN L, ZHANG X Q. Characteristics of Airy beam propagating in circular periodic media[J]. Laser Technology, 2019, 43(3): 432-436(in Chinese).
    [9]
    CHENG Zh, CHU X Ch, ZHAO Sh H, et al. Study of the drift characteristics of Airy vortex beam in atmospheric turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002(in Chinese). DOI: 10.3788/CJL201542.1213002
    [10]
    LIU X Y, ZHAO D. Propagation of a vortex Airy beam in chiral medium[J]. Optics Communications, 2014, 321: 6-10. DOI: 10.1016/j.optcom.2014.01.068
    [11]
    DENG D, CHEN C, ZHAO X, et al. Propagation of an Airy vortex beam in uniaxial crystals[J]. Applied Physics, 2013, B110(3): 433-436.
    [12]
    CHEN R, ZHONG L, WU Q, et al. Propagation properties and M2 factors of a vortex Airy beam[J]. Optics & Laser Technology, 2012, 44(7): 2015-2019.
    [13]
    GAO J Q, ZHOU Zh L, XU H F, et al. Modal intensity of partially coherent Airy vortex beams in non-Kolmogorov turbulence[J]. Laser Technology, 2021, 45(4): 522-529(in Chinese).
    [14]
    VESELAGO V G. The electrodynamics of substances with simulta-neously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. DOI: 10.1070/PU1968v010n04ABEH003699
    [15]
    XU S D, FENG Y X. Study on propagation properties of Airy beams through negative index medium[J]. Acta Photonica Sinica, 2015, 44(2): 0208002(in Chinese). DOI: 10.3788/gzxb20154402.0208002
    [16]
    XU S D, XU B J. Study on propagation properties of Gaussian schell-model beams in negative index medium[J]. Laser Technology, 2014, 38(5): 595-598(in Chinese).
    [17]
    FALCONE F, LOPETEGI T, LASO M A G, et al. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Physical Review Letters, 2004, 93(19): 197401. DOI: 10.1103/PhysRevLett.93.197401
    [18]
    PIMENOV A, LOIDL A, GEHRKE K, et al. Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range[J]. Physical Review Letters, 2007, 98(19): 197401. DOI: 10.1103/PhysRevLett.98.197401
    [19]
    RACHFORD F J, ARMSTEAD D N, HARRIS V G, et al. Simulations of ferrite-dielectric-wire composite negative index materials[J]. Physical Review Letters, 2007, 99(5): 057202. DOI: 10.1103/PhysRevLett.99.057202
    [20]
    PARIMI P V, LU W T, VODO P, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals[J]. Physical Review Letters, 2004, 92(12): 127401. DOI: 10.1103/PhysRevLett.92.127401
    [21]
    CHEN J, WANG Y, JIA B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239-242. DOI: 10.1038/nphoton.2011.17
    [22]
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. DOI: 10.1103/PhysRevLett.85.3966
    [23]
    SEDDON N, BEARPARK T. Observation of the inverse Doppler effect[J]. Science, 2003, 302(5650): 1537-1540. DOI: 10.1126/science.1089342
    [24]
    LIU X Y. Studies on propagation and optical trapping of non-Gaussian correlated partially coherent beams[D]. Hangzhou: Zhejiang University, 2016: 66-73(in Chinese).
    [25]
    HUA S. Research on the propagation properties of several types of the airy beams[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 27-33(in Chinese).
    [26]
    DAI H T, LIU Y J, LUO D, et al. Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619. DOI: 10.1364/OL.36.001617
  • Related Articles

    [1]LIU Rongzhan. Design and experimental research of blue light homogenization system based on microlens array[J]. LASER TECHNOLOGY, 2024, 48(4): 499-504. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.007
    [2]HU Xuanyu, ZHENG Haoxuan, ZHENG Yi, DUAN Changcheng, XIAO Yu, XU Gang, TANG Xiahui. Research on modularization of 500 W blue semiconductor laser based on beam combination[J]. LASER TECHNOLOGY, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003
    [3]GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]FANG Yaoxin, GUO Baofeng, MA Chao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. LASER TECHNOLOGY, 2019, 43(5): 713-718. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.024
    [6]ZHAO Jianwei, JIANG Xiaowei, FANG Xiaomin, ZHAO Yanjuan, GE Zhengyang. Study on improving the extraction efficiency of blue light LED by metal gratings[J]. LASER TECHNOLOGY, 2019, 43(1): 58-62. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.012
    [7]HU Jiangtao, HUANG Feng, ZHANG Chu, LIU Bingqi, WANG Yuanbo. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. LASER TECHNOLOGY, 2015, 39(4): 492-496. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [8]LI Qiang, LIU Zhe, NAN Bingbing, GU Shuyin. Improved image super-resolution reconstruction based neighbor embedding[J]. LASER TECHNOLOGY, 2015, 39(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [9]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [10]Wang Pengfei, Zhang Dong, LÜ Baida, Sun Yingchun. Recent advances of diode-pumped thin disc-laser[J]. LASER TECHNOLOGY, 2003, 27(6): 551-553,566.
  • Cited by

    Periodical cited type(1)

    1. 周健文,姚纳,赵汗青,张云凡,焦蛟,孙旭,伍波. 大气湍流下超振荡望远成像的理论研究. 激光技术. 2023(01): 115-120 . 本站查看

    Other cited types(0)

Catalog

    Article views (10) PDF downloads (9) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return