Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 46 Issue 6
Nov.  2022
Article Contents
Turn off MathJax

Citation:

Study on propagation properties of vortex Airy beams through negative index medium

  • Received Date: 2021-09-22
    Accepted Date: 2021-10-18
  • In order to investigate the propagation dynamics of vortex Airy beams passing through the negative index medium(NIM), the propagation dynamics equation was obtained based on the Collins formula. The intensity, vortex, and phase were studied by using the equation. The results show that it is possible to controlling the center lobe, superimposition position, and the intensity by adjusting the parameters of the negative index medium. All these properties of the propagation of the beam in NIM may have applications in areas such as optical micromanipulation and optical sorting.
  • 加载中
  • [1]

    BERRY M V, BALAZS N L. Nonspreading wave packets[J]. American Journal of Physics, 1979, 47(3): 264-267. doi: 10.1119/1.11855
    [2]

    SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-980. doi: 10.1364/OL.32.000979
    [3]

    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99: 213901. doi: 10.1103/PhysRevLett.99.213901
    [4]

    YUE Y Y, XIAO H, WANG Z X, et al. Research on diffraction and self-acceleration of Airy beam[J]. Acta Physica Sinica, 2013, 62(4): 044205(in Chinese). doi: 10.7498/aps.62.044205
    [5]

    KE X Zh, WANG S. Evolution of the intensity of partially coherent Airy beam in atmospheric turbulence[J]. Acta Photonica Sinica, 2017, 46(7): 0701001(in Chinese). doi: 10.3788/gzxb20174607.0701001
    [6]

    WANG S. Evolution of the intensity and experimental study of partially coherent Airy beam in atmospheric turbulence[D]. Xi'an: Xi'an University of Technology, 2017: 5-8(in Chinese).
    [7]

    QIAN Y X, MAO H X. Generation and propagation characteristics of generalized Airy beams with tunable trajectories[J]. Acta Photonica Sinica, 2018, 47(2): 0226001(in Chinese). doi: 10.3788/gzxb20184702.0226001
    [8]

    JIN L, ZHANG X Q. Characteristics of Airy beam propagating in circular periodic media[J]. Laser Technology, 2019, 43(3): 432-436(in Chinese).
    [9]

    CHENG Zh, CHU X Ch, ZHAO Sh H, et al. Study of the drift characteristics of Airy vortex beam in atmospheric turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002(in Chinese). doi: 10.3788/CJL201542.1213002
    [10]

    LIU X Y, ZHAO D. Propagation of a vortex Airy beam in chiral medium[J]. Optics Communications, 2014, 321: 6-10. doi: 10.1016/j.optcom.2014.01.068
    [11]

    DENG D, CHEN C, ZHAO X, et al. Propagation of an Airy vortex beam in uniaxial crystals[J]. Applied Physics, 2013, B110(3): 433-436.
    [12]

    CHEN R, ZHONG L, WU Q, et al. Propagation properties and M2 factors of a vortex Airy beam[J]. Optics & Laser Technology, 2012, 44(7): 2015-2019.
    [13]

    GAO J Q, ZHOU Zh L, XU H F, et al. Modal intensity of partially coherent Airy vortex beams in non-Kolmogorov turbulence[J]. Laser Technology, 2021, 45(4): 522-529(in Chinese).
    [14]

    VESELAGO V G. The electrodynamics of substances with simulta-neously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699
    [15]

    XU S D, FENG Y X. Study on propagation properties of Airy beams through negative index medium[J]. Acta Photonica Sinica, 2015, 44(2): 0208002(in Chinese). doi: 10.3788/gzxb20154402.0208002
    [16]

    XU S D, XU B J. Study on propagation properties of Gaussian schell-model beams in negative index medium[J]. Laser Technology, 2014, 38(5): 595-598(in Chinese).
    [17]

    FALCONE F, LOPETEGI T, LASO M A G, et al. Babinet principle applied to the design of metasurfaces and metamaterials[J]. Physical Review Letters, 2004, 93(19): 197401. doi: 10.1103/PhysRevLett.93.197401
    [18]

    PIMENOV A, LOIDL A, GEHRKE K, et al. Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range[J]. Physical Review Letters, 2007, 98(19): 197401. doi: 10.1103/PhysRevLett.98.197401
    [19]

    RACHFORD F J, ARMSTEAD D N, HARRIS V G, et al. Simulations of ferrite-dielectric-wire composite negative index materials[J]. Physical Review Letters, 2007, 99(5): 057202. doi: 10.1103/PhysRevLett.99.057202
    [20]

    PARIMI P V, LU W T, VODO P, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals[J]. Physical Review Letters, 2004, 92(12): 127401. doi: 10.1103/PhysRevLett.92.127401
    [21]

    CHEN J, WANG Y, JIA B, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239-242. doi: 10.1038/nphoton.2011.17
    [22]

    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [23]

    SEDDON N, BEARPARK T. Observation of the inverse Doppler effect[J]. Science, 2003, 302(5650): 1537-1540. doi: 10.1126/science.1089342
    [24]

    LIU X Y. Studies on propagation and optical trapping of non-Gaussian correlated partially coherent beams[D]. Hangzhou: Zhejiang University, 2016: 66-73(in Chinese).
    [25]

    HUA S. Research on the propagation properties of several types of the airy beams[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 27-33(in Chinese).
    [26]

    DAI H T, LIU Y J, LUO D, et al. Propagation properties of an optical vortex carried by an Airy beam: Experimental implementation[J]. Optics Letters, 2011, 36(9): 1617-1619. doi: 10.1364/OL.36.001617
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article views(6722) PDF downloads(22) Cited by()

Proportional views

Study on propagation properties of vortex Airy beams through negative index medium

  • School of Sciences, Zhejiang University of Science and Technology, Hangzhou 310023, China

Abstract: In order to investigate the propagation dynamics of vortex Airy beams passing through the negative index medium(NIM), the propagation dynamics equation was obtained based on the Collins formula. The intensity, vortex, and phase were studied by using the equation. The results show that it is possible to controlling the center lobe, superimposition position, and the intensity by adjusting the parameters of the negative index medium. All these properties of the propagation of the beam in NIM may have applications in areas such as optical micromanipulation and optical sorting.

引言
  • 1979年,BERRY在解量子力学方程时,首次引入了艾里(Airy)函数[1]。当时,Airy函数并未得到相关科研人员的跟进研究, 直到2007年,SIVILOGLOU等人对有限能量Airy光束进行了专门研究[2-3]。此后,科研人员发现Airy光束拥有许多奇特的传输性质,Airy光束的研究迅速成为热点[4-8]。在此基础上,将涡旋叠加在Airy光束的研究也成为了研究热点。例如Airy涡旋光束的漂移[9]、在手征材料中的传输特性[10]、单轴晶体中的传输特性[11]M2因子与传输特性[12]、部分相干Airy涡旋光束的特性[13]等。

    另一方面,负折射率自1968年被VESELAGO在理论上证明[14]后也获得了科研人员大量关注和研究[15-16]。目前,科研人员可以通过多种方法实现负折射率介质(negative index medium,NIM)[17-20],并且可以制造可见光范围的NIM[21]。由于NIM具有其它介质不具有的电磁特性,科研人员利用NIM获得了多种反常效应[22-23]

    在上述研究的基础上,本文作者对Airy涡旋光束通过新型人工复合电磁介质即NIM的传输特性进行了研究。与普通介质不同,Airy涡旋光束在NIM中具有独特的特性。利用Collins公式推导出了Airy涡旋光束通过ABCD光学系统的传输方程,并具体研究了通过NIM的传输特征。

1.   Airy涡旋光束通过NIM的传输方程
  • 2维有限能量Airy光束加载涡旋后,在初始平面(z=0),场分布为[10, 24-25]

    式中,wxwyxy方向横向尺度比例参数;a为指数截断因子,其大小决定了光束衰减快慢;xdyd为原始位置,l为拓扑荷数;fA(·)即为Airy函数:

    当Airy涡旋光束通过NIM时,根据Collins公式得到Airy涡旋光束通过NIM的传输动力学方程:

    式中,x0y0为输入平面的横坐标和纵坐标,$k_0=\frac{2 {\rm{ \mathsf{ π} }}}{\lambda} $是真空中光的波数;A, B, D分别为ABCD矩阵光学的传输矩阵元。

    由于拓扑荷数对光束的传输特性没有明显影响[26],为便于研究,选取单位拓扑荷数。把(1)式代入(3)式,选取涡旋的拓扑荷数l=1,经积分整理可得:

    式中,

    式中, P2P3为Airy光束的复振幅,P1为Airy光束加载涡旋后的结果,涡旋的中心可从(6)式得到:(Axd+2 xcAyd+ 2yc); fA′(·)为Airy函数的导数;xc= $\frac{B^2}{4 A k_0{ }^2 w_x{ }^3} $, yc = $ \frac{B^2}{4 A k_0{ }^2 w_y{ }^3}$, 为Airy光束主峰在xy方向中心位置。

    Airy涡旋光束通过NIM介质的几何结构示意图如图 1所示。

    Figure 1.  Geometry of a vortex Airy beam passing through a negative index medium

    根据矩阵光学理论可知,当Airy涡旋光束通过NIM时,光学传输系统的ABCD矩阵为:

    式中,n为NIM的折射率。由于Airy涡旋光束的主峰是自加速偏转的,偏转加速度与wx, wyλ有关。此外,涡旋位置也随着传输距离增加而偏转。在某一特定传输距离处,Airy涡旋光束的涡旋位置和Airy光束主峰位置重叠,此时:

    根据(9)式和(10)式,涡旋与主峰重叠时的z为:

2.   Airy涡旋光束通过NIM的数值计算与分析
  • 利用(4)式即可得到Airy涡旋光束通过NIM的光强和相位等传输特性。光源参数设定为:a=0.05,λ= 632.8nm,wx =0.15mm,wy =0.15mm,xd= yd=-0.3mm。

    n=-1.1时,根据(11)式可知,特殊传输距离z0=695mm。图 2为传输距离是z0, 1.8z0, 2.6z0, 3.4z0时光强和相位分布图。从图 2a~图 2d看出: 当z=z0时,Airy光束主峰被涡旋破坏;随着传输距离z的增加,Airy光束的主峰又立刻恢复,涡旋重新出现。这说明涡旋位置和Airy光束主峰的轨迹是不相同的,只有在某一特定传输距离时二者重合,重合时涡旋会破坏Airy光束的主峰。此外,图 2a~图 2d还显示Airy光束主峰沿x=y轴加速偏转,主峰的位置始终在x轴和y轴的对角线上。图 2e~图 2h为传输距离是z0, 1.8z0, 2.6z0, 3.4z0时对应的相位分布。图中箭头所指的位置相位出现树杈型分布,这就由涡旋的奇异性所致,该树杈的交叉点即为涡旋的位置。从相位分布图可以看出: 当传输距离为z0时涡旋被破坏,随着传输距离的增加,涡旋重新出现。此外,同其它文献[5]的相位分布对比发现,本树杈同其它参考文献中树杈的方向是相反的,这说明负折射会导致涡旋的方向转向。

    Figure 2.  Intensity and phase distributions at the positions z0, 1.8z0, 2.6z0, 3.4z0

    图 3z =2200mm、NIM的折射率n为-1, -1.5, -2和-2.5时Airy涡旋光束光强分布图。从图 3中可知, 当z固定时,可以通过改变NIM的折射率控制Airy涡旋光束的主峰位置。

    Figure 3.  Propagation dynamics of vortex Airy beams passing through the negative index medium

    图 4为NIM的折射率n为-1, -1.5, -2和-2.5时Airy涡旋光束主峰位置和涡旋中心位置随传输距离变化图。从图 4中可以看出, Airy涡旋光束主峰位置和涡旋中心位置都随传输距离呈抛物线加速偏转,但涡旋比主峰加速快。在一个特殊传输距离处,Airy涡旋光束主峰位置和涡旋中心位置重叠。从图 4中还能看出, 可以通过改变NIM的折射率控制该重叠位置在传输方向的位置,但x轴的位置是不变的。

    Figure 4.  Center lobe and the vortex of vortex Airy beams change with the propagation distance

3.   结论
  • Airy涡旋光束通过NIM的传输动力学特性研究表明:Airy涡旋光束的涡旋中心位置同主峰一样随传输距离呈抛物线加速偏转,但涡旋比主峰加速快; 在特定位置,Airy涡旋光束的涡旋与主峰位置重叠,此时,Airy光束主峰被涡旋破坏,涡旋也同时被Airy光束主峰破坏; 随着z增加,涡旋与主峰分离,涡旋再次出现,Airy光束主峰恢复。由于NIM的独特光学性质,导致Airy涡旋光束通过NIM时涡旋的方向与常规介质中涡旋的方向相反。此外,通过调节NIM的折射率可实现对Airy涡旋光束光强、主峰位置和重叠位置的控制。研究显示, 可以通过NIM控制激光光束的偏转、强度等特性。此研究对应用物理光学对生物系统进行检测、治疗、加工和改造等方面具有实际的应用价值。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return