[1]
|
GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321):2012-2014. doi: 10.1126/science.276.5321.2012 |
[2]
|
BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi: 10.1126/science.1127344 |
[3]
|
RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2010, 3(10):793-796. |
[4]
|
DERTINGER T, COLYER R, IYER G, et al. Fast, background-free, 3-D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences, 2009, 106(52):22287-22292. doi: 10.1073/pnas.0907866106 |
[5]
|
ZHU L, ZHANG W, ELNATAN D, et al. Faster STORM using compressed sensing[J]. Nature Methods, 2012, 9(7):721-723. doi: 10.1038/nmeth.1978 |
[6]
|
BABCOCK H P, MOFFITT J R, CAO Y, et al. Fast compressed sensing analysis for super-resolution imaging using l1-homotopy[J]. Optics Express, 2013, 21(23):28583. doi: 10.1364/OE.21.028583 |
[7]
|
CANDES E J, WAKIN M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731 |
[8]
|
CANDS E J, FERNANDEZ C. Towards a mathematical theory of super-resolution[J]. Communications on Pure & Applied Mathematics, 2014, 67(6):906-956. |
[9]
|
WU M, XING M D, ZHANG L.Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics and Information Technology, 2014, 36(1):187-193(in Chinese). |
[10]
|
LUSTING M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2010, 58(6):1182-1195. |
[11]
|
WANG L Y, WEI Zh H, LUO Sh H, et al.Image superreconstruction for micro-CT based on compressed sensing[J]. Journal of Image and Graphics, 2012, 17(4) :487-493(in Chinese). |
[12]
|
GONG W L, HAN Sh Sh. Super-resolution ghost imaging via compressive sampling reconstruction[DB/OL]. (2009-10-26)[2019-7-4]. https://arxiv.org/abs/0910.4823. |
[13]
|
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 1(4):586-597. |
[14]
|
CHENG T, CHEN D N, YU B. Compressive sensing post processing of STORM's raw images and measurement matrix based on PSF[J]. Journal of Detection & Control, 2017, 39(4): 31-38 (in Ch-inese). |
[15]
|
LI Sh, MA C W, LI Y, et al. Survey on reconstruction algorithm based on compressive sensing[J]. Infrared and Laser Engineering, 2013, 42(s1): 225-232(in Chinese). |
[16]
|
STEPHANE G M, ZHANG Zh F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415. doi: 10.1109/78.258082 |
[17]
|
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. doi: 10.1109/TIT.2007.909108 |
[18]
|
CHEN S S, SAUNDERS D M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159. doi: 10.1137/S003614450037906X |
[19]
|
MALEKI A. Coherence analysis of iterative thresholding algorithms[C]//2009 47th Annual Allerton Conference on Communication, Control, and Computing. New York, USA: IEEE, 2009: 236-243. |
[20]
|
GIACOBELLO D, CHRISTENSEN M G, MURTHI M N, et al. Enhancing sparsity in linear prediction of speech by iteratively reweighted 1-norm minimization[C]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing. New York, USA: IEEE, 2010: 4650-4653. |
[21]
|
BARON D, SARYOTHAM S, BARANIUK R G. Bayesian compre-ssive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1):269-280. doi: 10.1109/TSP.2009.2027773 |
[22]
|
ROCKAFELLAR R T. Convex analysis[M]. Princeton, USA:Princeton University Press, 1970: 1-40. |
[23]
|
BARZILAI J, BORWEIN J M. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis, 1988, 8(1):141-148. doi: 10.1093/imanum/8.1.141 |