Advanced Search
GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
Citation: GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001

Super-resolution reconstruction for terahertz images based on gradient transform

More Information
  • Received Date: May 19, 2019
  • Revised Date: July 02, 2019
  • Published Date: May 24, 2020
  • In order to improve the quality of terahertz image and overcome the problem of edge blur of terahertz image, a super-resolution reconstruction method, which combines rational fractal interpolation and gradient field transform, was proposed in this paper for terahertz image reconstruction with frequencies of 0.25THz, 0.50THz, and 0.75THz. Meanwhile, spatial entropy-based image enhancement and bilateral filtering are introduced to optimize the reconstruction. Experimental results illustrate that after processing interpolated terahertz images by super-resolution reconstruction based on gradient field transform, the edge strength of images with frequencies of 0.25THz, 0.50THz, and 0.75THz were respectively improved by 169%, 116%, and 104%, and the average gradient of those images were improved by 16%, 28%, and 24%, respectively. Moreover, signal frequency and intensity would affect the performance of the reconstruction. This method can recover the detail information in terahertz images, sharpen edges of the object, improve the quality of terahertz images without ringing effect, and has practical value.
  • [1]
    MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8): 9417-9431. DOI: 10.1364/OE.26.009417
    [2]
    YANG X, ZHAO X, YANG K, et al. Biomedical applications of te-rahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824. DOI: 10.1016/j.tibtech.2016.04.008
    [3]
    OH S J, KIM S H, JI Y B, et al. Study of freshly excised brain ti-ssues using terahertz imaging[J]. Biomedical Optics Express, 2014, 5(8): 2837-2842. DOI: 10.1364/BOE.5.002837
    [4]
    STANTCHEV R I, SUN B, HORNETT S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190. DOI: 10.1126/sciadv.1600190
    [5]
    DONG J, LOCQUET A, CITRIN D. Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation[J]. Optics Letters, 2017, 42(9): 1828-1831. DOI: 10.1364/OL.42.001828
    [6]
    PARK C, PARK J Y, SON J H, et al. Terahertz imaging of excised oral cancer at frozen temperature[J]. Biomedical Optics Express, 2013, 4(8): 1413-1421. DOI: 10.1364/BOE.4.001413
    [7]
    XU L M, FAN W H, LIU J. De-noising and enhancement for terahertz imaging[J]. Infrared and Laser Engineering, 2013, 42(10): 2865-2870(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201310049
    [8]
    CHEN W Y, XIE Q, WU H. Applied research on supper resolution reconstruction method for image enhancement[J].Journal of Naval University of Engineering, 2015, 27(1): 74-78(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgcdxxb2015010017
    [9]
    SHEN H F, LI P X, ZHANG L P, et al. Overview on super resolution image reconstruction[J]. Optical Technique, 2009, 35(2): 194-203(in Chinese).
    [10]
    YUE L, SHEN H, LI J, et al. Image super-resolution: The techniques, applications, and future[J]. Signal Processing: Image Communication, 2016, 128: 389-408. http://d.old.wanfangdata.com.cn/Periodical/zdhxb2015020002
    [11]
    XIE Y Y, HU Ch H, SHI B, et al. Super-resolution image reconstruction and its application in terahertz images[J]. System Simulation Technology, 2013, 9(4):306-309(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtfzjs201304004
    [12]
    ZHENG X T, YUAN Y, LU X Q. Single image super-resolution re-storation algorithm from external example to internal self-similarity[J].Acta Optica Sinica, 2017, 37(3): 0318006(in Chinese). DOI: 10.3788/AOS201737.0318006
    [13]
    XU L M, FAN W H, LIU J. High-resolution reconstruction for terahertz imaging[J]. Applied Optics, 2014, 53(33): 7891-7897. DOI: 10.1364/AO.53.007891
    [14]
    SHI J, WANG Y, XU D, et al. Terahertz imaging based on morphological reconstruction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6edc4a7e3d4b104e17f50fff98c3310f
    [15]
    AHI K. A method and system for enhancing the resolution of terahertz imaging[J]. Measurement, 2019, 138: 614-619. DOI: 10.1016/j.measurement.2018.06.044
    [16]
    WEI M G, LIANG D Ch, GU J Q, et al. Terahertz radar imaging based on time-domain spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201421012
    [17]
    FATTAL R. Image upsampling via imposed edge statistics[J]. ACM Transactions on Graphics, 2007, 26(3): 95. DOI: 10.1145/1276377.1276496
    [18]
    SUN J, SUN J, XU Z B, et al. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1529-1542. DOI: 10.1109/TIP.2010.2095871
    [19]
    YAN Q, XU Y, YANG X, et al. Single image superresolution based on gradient profile sharpness[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3187-3202. DOI: 10.1109/TIP.2015.2414877
    [20]
    QIANG S, XIONG R, DONG L, et al. Fast image super-resolution via local adaptive gradient field sharpening transform[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1966-1980. DOI: 10.1109/TIP.2017.2789323
    [21]
    PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. DOI: 10.1109/MSP.2003.1203207
    [22]
    ZHANG Y, FAN Q, BAO F, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782-3797. DOI: 10.1109/TIP.2018.2826139
    [23]
    CELIK T. Spatial entropy-based global and local image contrast enhancement[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5298-5308. DOI: 10.1109/TIP.2014.2364537
    [24]
    CHAUDHURY K N, DABHADE S D. Fast and provably accurate bilateral filtering[J]. IEEE Transactions on Image Processing, 2016, 25(6): 2519-2528. DOI: 10.1109/TIP.2016.2548363
    [25]
    WEI X, LIU Q, GUO Y Zh, et al. Image denoising algorithm based on joint bilateral filter and multi-resolution analysis[J]. Computer Engineering and Design, 2016, 37(12): 3327-3833(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcysj201612036
    [26]
    ZHANG X, ZHAO Y M, DENG Ch, et al. Study on the passive te-rahertz image target detection[J].Acta Optica Sinica, 2013, 33(2): 0211002(in Chinese). DOI: 10.3788/AOS201333.0211002

Catalog

    Article views (5) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return