Advanced Search
GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
Citation: GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001

Super-resolution reconstruction for terahertz images based on gradient transform

More Information
  • Received Date: May 19, 2019
  • Revised Date: July 02, 2019
  • Published Date: May 24, 2020
  • In order to improve the quality of terahertz image and overcome the problem of edge blur of terahertz image, a super-resolution reconstruction method, which combines rational fractal interpolation and gradient field transform, was proposed in this paper for terahertz image reconstruction with frequencies of 0.25THz, 0.50THz, and 0.75THz. Meanwhile, spatial entropy-based image enhancement and bilateral filtering are introduced to optimize the reconstruction. Experimental results illustrate that after processing interpolated terahertz images by super-resolution reconstruction based on gradient field transform, the edge strength of images with frequencies of 0.25THz, 0.50THz, and 0.75THz were respectively improved by 169%, 116%, and 104%, and the average gradient of those images were improved by 16%, 28%, and 24%, respectively. Moreover, signal frequency and intensity would affect the performance of the reconstruction. This method can recover the detail information in terahertz images, sharpen edges of the object, improve the quality of terahertz images without ringing effect, and has practical value.
  • [1]
    MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8): 9417-9431. DOI: 10.1364/OE.26.009417
    [2]
    YANG X, ZHAO X, YANG K, et al. Biomedical applications of te-rahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824. DOI: 10.1016/j.tibtech.2016.04.008
    [3]
    OH S J, KIM S H, JI Y B, et al. Study of freshly excised brain ti-ssues using terahertz imaging[J]. Biomedical Optics Express, 2014, 5(8): 2837-2842. DOI: 10.1364/BOE.5.002837
    [4]
    STANTCHEV R I, SUN B, HORNETT S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190. DOI: 10.1126/sciadv.1600190
    [5]
    DONG J, LOCQUET A, CITRIN D. Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation[J]. Optics Letters, 2017, 42(9): 1828-1831. DOI: 10.1364/OL.42.001828
    [6]
    PARK C, PARK J Y, SON J H, et al. Terahertz imaging of excised oral cancer at frozen temperature[J]. Biomedical Optics Express, 2013, 4(8): 1413-1421. DOI: 10.1364/BOE.4.001413
    [7]
    XU L M, FAN W H, LIU J. De-noising and enhancement for terahertz imaging[J]. Infrared and Laser Engineering, 2013, 42(10): 2865-2870(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201310049
    [8]
    CHEN W Y, XIE Q, WU H. Applied research on supper resolution reconstruction method for image enhancement[J].Journal of Naval University of Engineering, 2015, 27(1): 74-78(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgcdxxb2015010017
    [9]
    SHEN H F, LI P X, ZHANG L P, et al. Overview on super resolution image reconstruction[J]. Optical Technique, 2009, 35(2): 194-203(in Chinese).
    [10]
    YUE L, SHEN H, LI J, et al. Image super-resolution: The techniques, applications, and future[J]. Signal Processing: Image Communication, 2016, 128: 389-408. http://d.old.wanfangdata.com.cn/Periodical/zdhxb2015020002
    [11]
    XIE Y Y, HU Ch H, SHI B, et al. Super-resolution image reconstruction and its application in terahertz images[J]. System Simulation Technology, 2013, 9(4):306-309(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtfzjs201304004
    [12]
    ZHENG X T, YUAN Y, LU X Q. Single image super-resolution re-storation algorithm from external example to internal self-similarity[J].Acta Optica Sinica, 2017, 37(3): 0318006(in Chinese). DOI: 10.3788/AOS201737.0318006
    [13]
    XU L M, FAN W H, LIU J. High-resolution reconstruction for terahertz imaging[J]. Applied Optics, 2014, 53(33): 7891-7897. DOI: 10.1364/AO.53.007891
    [14]
    SHI J, WANG Y, XU D, et al. Terahertz imaging based on morphological reconstruction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6edc4a7e3d4b104e17f50fff98c3310f
    [15]
    AHI K. A method and system for enhancing the resolution of terahertz imaging[J]. Measurement, 2019, 138: 614-619. DOI: 10.1016/j.measurement.2018.06.044
    [16]
    WEI M G, LIANG D Ch, GU J Q, et al. Terahertz radar imaging based on time-domain spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201421012
    [17]
    FATTAL R. Image upsampling via imposed edge statistics[J]. ACM Transactions on Graphics, 2007, 26(3): 95. DOI: 10.1145/1276377.1276496
    [18]
    SUN J, SUN J, XU Z B, et al. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1529-1542. DOI: 10.1109/TIP.2010.2095871
    [19]
    YAN Q, XU Y, YANG X, et al. Single image superresolution based on gradient profile sharpness[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3187-3202. DOI: 10.1109/TIP.2015.2414877
    [20]
    QIANG S, XIONG R, DONG L, et al. Fast image super-resolution via local adaptive gradient field sharpening transform[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1966-1980. DOI: 10.1109/TIP.2017.2789323
    [21]
    PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36. DOI: 10.1109/MSP.2003.1203207
    [22]
    ZHANG Y, FAN Q, BAO F, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782-3797. DOI: 10.1109/TIP.2018.2826139
    [23]
    CELIK T. Spatial entropy-based global and local image contrast enhancement[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5298-5308. DOI: 10.1109/TIP.2014.2364537
    [24]
    CHAUDHURY K N, DABHADE S D. Fast and provably accurate bilateral filtering[J]. IEEE Transactions on Image Processing, 2016, 25(6): 2519-2528. DOI: 10.1109/TIP.2016.2548363
    [25]
    WEI X, LIU Q, GUO Y Zh, et al. Image denoising algorithm based on joint bilateral filter and multi-resolution analysis[J]. Computer Engineering and Design, 2016, 37(12): 3327-3833(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcysj201612036
    [26]
    ZHANG X, ZHAO Y M, DENG Ch, et al. Study on the passive te-rahertz image target detection[J].Acta Optica Sinica, 2013, 33(2): 0211002(in Chinese). DOI: 10.3788/AOS201333.0211002
  • Related Articles

    [1]YUAN Fengbo, WEI Haiying, HUANG Chu, WU Jiazhu, ZHANG Yi. Taguchi experimental investigation on process energy efficiency of laser direct metal deposition[J]. LASER TECHNOLOGY, 2018, 42(1): 24-29. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.005
    [2]CHEN Cun-hua, ZOU Heng-qi. The analysis of metal deposition and micro-crystallites deposited byusing CO2 laser from aqueous solution[J]. LASER TECHNOLOGY, 2008, 32(6): 618-620,627.
    [3]SUN Shao-ni. Research of substrate preheating for laser metal deposition shaping[J]. LASER TECHNOLOGY, 2008, 32(6): 608-610.
    [4]LI Ai-kui, WANG Ze-min, LIU Jia-jun, ZENG Xiao-yan. Direct laser writing of strip waveguide in sol-gel film[J]. LASER TECHNOLOGY, 2008, 32(3): 317-319.
    [5]LONG Ri-sheng, LIU Wei-jun, SHANG Xiao-feng. Numerical simulation of temperature field on laser metal deposition shaping[J]. LASER TECHNOLOGY, 2007, 31(4): 394-396,430.
    [6]REN Yu-song, HUA Guo-ran, LUO Xin-hua, TIAN Zong-jun, HUANG Yin-hui. Experimental research of bulk fabrication of nano-SiC ceramic powder by laser sintering[J]. LASER TECHNOLOGY, 2006, 30(4): 402-405.
    [7]CHEN Cun-hua, LIU jian-guo. The mechanism of CO2 laser-induced metal deposition from aqueous solution[J]. LASER TECHNOLOGY, 2005, 29(4): 383-385.
    [8]CHEN Cun-hua, LIU Jian-guo, ZHENG Jia-shen, ZHOU Qi. The research of adhesion of metal layer deposited on epoxy-resin board by CO2 laser-induced from aqueous solution[J]. LASER TECHNOLOGY, 2004, 28(1): 26-28,35.
    [9]Li Yuhong. Research of metal-ceramic TiC-B4C-SiC-Co laser cladding on A3 steel[J]. LASER TECHNOLOGY, 2003, 27(5): 396-397,399.
    [10]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
  • Cited by

    Periodical cited type(5)

    1. 覃淮青,姚顺春,喻子彧,马维喆,卢志民,董美蓉,陆继东. 煤粉流等离子体光谱诊断及定量分析研究. 工程热物理学报. 2024(06): 1863-1871 .
    2. 唐瑞玲,胡梦颖,邢夏,刘彬,张鹏鹏,顾雪,房芳,张灵火,徐进力,白金峰,张勤. 激光诱导击穿光谱仪工作参数对测定土壤样品中稀土元素的影响. 应用激光. 2021(05): 1084-1090 .
    3. 龚书航,钱东斌,苏茂根,赵冬梅,孙对兄,吴超,王永强,马新文. 复杂颗粒状物质中微量元素的LIBS稳定性研究. 激光与光电子学进展. 2018(07): 472-477 .
    4. 李文煜,章海锋,刘婷,马宇. 一种波束扫描固态等离子体超表面的设计. 激光技术. 2018(06): 822-826 . 本站查看
    5. 马宇,章海锋,刘婷,李文煜. 一种波束扫描超材料天线的设计. 强激光与粒子束. 2018(10): 70-75 .

    Other cited types(1)

Catalog

    Article views (5) PDF downloads (13) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return