Advanced Search
WANG Guo, WANG Qiang, XU Bang, ZHAO Guangxing, YANG Bin. Power line extraction from airborne LiDAR data based on cloth simulation[J]. LASER TECHNOLOGY, 2022, 46(1): 134-138. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.015
Citation: WANG Guo, WANG Qiang, XU Bang, ZHAO Guangxing, YANG Bin. Power line extraction from airborne LiDAR data based on cloth simulation[J]. LASER TECHNOLOGY, 2022, 46(1): 134-138. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.015

Power line extraction from airborne LiDAR data based on cloth simulation

More Information
  • Received Date: August 19, 2020
  • Revised Date: October 18, 2020
  • Published Date: January 24, 2022
  • In order to realize the power line extraction of long distance linear airborne light detection and ranging(LiDAR), a power line extraction method of long-distance airborne LiDAR based on cloth simulation was proposed. On the basis of data preprocessing, the function between cloth and corresponding airborne LiDAR point cloud was analyzed by simulating the falling process of cloth. The position where cloth stayed after gravity falling was determined as the power line point cloud with similar height, and then the straight line was fitted in the xOy plane. The distances from points to the fitting line were used to judge the number of power lines whether odd or even. And the power line point clouds were divided by the judgment of points on both sides of the line to achieve the extraction of a single power line. The experimental results show that the accuracy of the proposed method is 98.9%, with high degree of automation and not sensitive to the lack of local point cloud, which has good engineering application value for intelligent powerline inspection and automatic analysis of transmission channel spatial structure.
  • [1]
    CHEN C, YANG B S, SONG S, et al. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-borne LiDAR data[J]. Remote Sensing, 2018, 10(4): 613-633. DOI: 10.3390/rs10040613
    [2]
    WU H, LIU H Y, DING G F, et al. Automatic extraction of power lines from laser point clouds in complex environments[J]. Laser Technology, 2020, 44(4): 509-514(in Chinese).
    [3]
    SHI L, GUO T, PENG Ch, et al. Segmentation of laser point cloud and safety detection of power lines[J]. Laser Technology, 2019, 43(3): 341-346(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201903010.htm
    [4]
    WANG Y J, CHEN Q, LIU L, et al. A hierarchical unsupervised method for power line classification from airborne LiDAR data[J]. International Journal of Digital Earth, 2019, 12(12): 1406-1422. DOI: 10.1080/17538947.2018.1503740
    [5]
    SHI H Y, GUO T, WANG D, et al. Power line suspension point location method based on laser point cloud[J]. Laser Technology, 2020, 44(3): 364-370(in Chinese).
    [6]
    PENG X Y, SONG S, QIAN J J, et al. Research on automatic positioning algorithm of power transmission towers based on UAV LiDAR[J]. Power System Technology, 2017, 41(11): 3670-3677(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTotal-DWJS201711040.htm
    [7]
    CHEN Ch, PENG X Y, SONG Sh, et al. Safety distance diagnosis of large scale transmission line corridor inspection based on LiDAR point cloud collected with UAV[J]. Power System Technology, 2017, 41(8): 2723-2730(in Chinese). http://www.dwjs.com.cn/EN/Y2017/V41/I8/2723
    [8]
    YU J, MU Ch, FENG Y M, et al. Power lines extraction techniques from airborne LiDAR data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1275-1279 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH201111006.htm
    [9]
    CHEN C, MAI X M, SONG S, et al. Automatic power lines extraction method from airborne LiDAR point cloud[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1600-1605(in Chinese).
    [10]
    MANOHAR Y, CHARUDATTA G. Extraction of power lines using mobile LiDAR data of roadway environment[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 258-265. DOI: 10.1016/j.rsase.2017.10.007
    [11]
    ZHAO L, WANG X P, DAI D D, et al. Automatic extraction algorithm of power line in complex background[J]. High Voltage Engineering, 2019, 45(1): 218-227(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GDYJ201901029.htm
    [12]
    WU J J, CHEN L, LI L, et al. Power line extraction and reconstruction from airborne LiDAR point cloud[J]. Laser Technology, 2019, 43(4): 500-505(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201904012.htm
    [13]
    ZHANG C X, ZHAO L, WANG X P, et al. Fast extraction algorithm of power lines in complex ground objects[J]. Journal of Wuhan University(Engineering Edition), 2018, 51(8) : 732-739(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSDD201808011.htm
    [14]
    WANG J, XIA Sh B, WANG H P, et al. Study on reconstruction of bundled conductors from helicopter-borne LiDAR data[J]. Remote Sensing Technology and Application, 2015, 30(6): 1189-1194(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201506020.htm
    [15]
    LIN X G, ZHANG J X. 3D power line reconstruction from airborne LiDAR point cloud of overhead electric power transmission corridors[J]. Acta Geodatrica et Cartographica Sinica, 2016, 45(3): 347-353 (in Chinese). http://d.wanfangdata.com.cn/Periodical/chxb201603016
    [16]
    DUAN M Y. 3D power line reconstruction from airborne LiDAR point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12): 1495(in Chinese). http://d.wanfangdata.com.cn/Periodical/chxb201603016
    [17]
    LAI X D, DAI D C, ZHENG M, et al. Power line 3D reconstruction form LiDAR point cloud data[J]. Journal of Remote Sensing, 2014, 18(6): 1223-1229(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YGXB201406010.htm
    [18]
    McLAUGHLIN R A. Extracting transmission lines from airborne LiDAR data[J]. IEEE Geoscience & Remote Sensing Letters, 2006, 3(2): 222-226. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621083
    [19]
    SOHN G, JWA Y, KIM H B. Automatic powerline scene classification and reconstruction using airborne LiDAR data[C]// ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012. Melbourne, Australia: International Society for Photogrammetry and Remote Sensing, 2012: 167-172.
    [20]
    WEIL J. The synthesis of cloth objects[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 49-54. DOI: 10.1145/15886.15891
    [21]
    ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501-519. DOI: 10.3390/rs8060501
    [22]
    WANG G, WANG Q, LIU Sh T, et al. Method of building extraction from UAV oblique photography point cloud based on cloth simulation[J]. Bulletin of Surveying and Mapping, 2020(10): 97-100.
  • Related Articles

    [1]PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013
    [2]TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019
    [3]PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
    [4]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [5]ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023
    [6]WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013
    [7]WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023
    [8]WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019
    [9]YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.
  • Cited by

    Periodical cited type(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 .
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 .
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 .
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 .
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 .
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 .
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 .
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 .
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 .
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 .
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 .
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 .
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 .
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 .
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 .
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 .
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 .
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 .
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 .
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 .

    Other cited types(12)

Catalog

    Article views (9) PDF downloads (6) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return