Advanced Search
WANG Guo, WANG Qiang, XU Bang, ZHAO Guangxing, YANG Bin. Power line extraction from airborne LiDAR data based on cloth simulation[J]. LASER TECHNOLOGY, 2022, 46(1): 134-138. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.015
Citation: WANG Guo, WANG Qiang, XU Bang, ZHAO Guangxing, YANG Bin. Power line extraction from airborne LiDAR data based on cloth simulation[J]. LASER TECHNOLOGY, 2022, 46(1): 134-138. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.015

Power line extraction from airborne LiDAR data based on cloth simulation

More Information
  • Received Date: August 19, 2020
  • Revised Date: October 18, 2020
  • Published Date: January 24, 2022
  • In order to realize the power line extraction of long distance linear airborne light detection and ranging(LiDAR), a power line extraction method of long-distance airborne LiDAR based on cloth simulation was proposed. On the basis of data preprocessing, the function between cloth and corresponding airborne LiDAR point cloud was analyzed by simulating the falling process of cloth. The position where cloth stayed after gravity falling was determined as the power line point cloud with similar height, and then the straight line was fitted in the xOy plane. The distances from points to the fitting line were used to judge the number of power lines whether odd or even. And the power line point clouds were divided by the judgment of points on both sides of the line to achieve the extraction of a single power line. The experimental results show that the accuracy of the proposed method is 98.9%, with high degree of automation and not sensitive to the lack of local point cloud, which has good engineering application value for intelligent powerline inspection and automatic analysis of transmission channel spatial structure.
  • [1]
    CHEN C, YANG B S, SONG S, et al. Automatic clearance anomaly detection for transmission line corridors utilizing UAV-borne LiDAR data[J]. Remote Sensing, 2018, 10(4): 613-633. DOI: 10.3390/rs10040613
    [2]
    WU H, LIU H Y, DING G F, et al. Automatic extraction of power lines from laser point clouds in complex environments[J]. Laser Technology, 2020, 44(4): 509-514(in Chinese).
    [3]
    SHI L, GUO T, PENG Ch, et al. Segmentation of laser point cloud and safety detection of power lines[J]. Laser Technology, 2019, 43(3): 341-346(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201903010.htm
    [4]
    WANG Y J, CHEN Q, LIU L, et al. A hierarchical unsupervised method for power line classification from airborne LiDAR data[J]. International Journal of Digital Earth, 2019, 12(12): 1406-1422. DOI: 10.1080/17538947.2018.1503740
    [5]
    SHI H Y, GUO T, WANG D, et al. Power line suspension point location method based on laser point cloud[J]. Laser Technology, 2020, 44(3): 364-370(in Chinese).
    [6]
    PENG X Y, SONG S, QIAN J J, et al. Research on automatic positioning algorithm of power transmission towers based on UAV LiDAR[J]. Power System Technology, 2017, 41(11): 3670-3677(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTotal-DWJS201711040.htm
    [7]
    CHEN Ch, PENG X Y, SONG Sh, et al. Safety distance diagnosis of large scale transmission line corridor inspection based on LiDAR point cloud collected with UAV[J]. Power System Technology, 2017, 41(8): 2723-2730(in Chinese). http://www.dwjs.com.cn/EN/Y2017/V41/I8/2723
    [8]
    YU J, MU Ch, FENG Y M, et al. Power lines extraction techniques from airborne LiDAR data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1275-1279 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH201111006.htm
    [9]
    CHEN C, MAI X M, SONG S, et al. Automatic power lines extraction method from airborne LiDAR point cloud[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1600-1605(in Chinese).
    [10]
    MANOHAR Y, CHARUDATTA G. Extraction of power lines using mobile LiDAR data of roadway environment[J]. Remote Sensing Applications: Society and Environment, 2017, 8: 258-265. DOI: 10.1016/j.rsase.2017.10.007
    [11]
    ZHAO L, WANG X P, DAI D D, et al. Automatic extraction algorithm of power line in complex background[J]. High Voltage Engineering, 2019, 45(1): 218-227(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GDYJ201901029.htm
    [12]
    WU J J, CHEN L, LI L, et al. Power line extraction and reconstruction from airborne LiDAR point cloud[J]. Laser Technology, 2019, 43(4): 500-505(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201904012.htm
    [13]
    ZHANG C X, ZHAO L, WANG X P, et al. Fast extraction algorithm of power lines in complex ground objects[J]. Journal of Wuhan University(Engineering Edition), 2018, 51(8) : 732-739(in Chin-ese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSDD201808011.htm
    [14]
    WANG J, XIA Sh B, WANG H P, et al. Study on reconstruction of bundled conductors from helicopter-borne LiDAR data[J]. Remote Sensing Technology and Application, 2015, 30(6): 1189-1194(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201506020.htm
    [15]
    LIN X G, ZHANG J X. 3D power line reconstruction from airborne LiDAR point cloud of overhead electric power transmission corridors[J]. Acta Geodatrica et Cartographica Sinica, 2016, 45(3): 347-353 (in Chinese). http://d.wanfangdata.com.cn/Periodical/chxb201603016
    [16]
    DUAN M Y. 3D power line reconstruction from airborne LiDAR point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12): 1495(in Chinese). http://d.wanfangdata.com.cn/Periodical/chxb201603016
    [17]
    LAI X D, DAI D C, ZHENG M, et al. Power line 3D reconstruction form LiDAR point cloud data[J]. Journal of Remote Sensing, 2014, 18(6): 1223-1229(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YGXB201406010.htm
    [18]
    McLAUGHLIN R A. Extracting transmission lines from airborne LiDAR data[J]. IEEE Geoscience & Remote Sensing Letters, 2006, 3(2): 222-226. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621083
    [19]
    SOHN G, JWA Y, KIM H B. Automatic powerline scene classification and reconstruction using airborne LiDAR data[C]// ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2012. Melbourne, Australia: International Society for Photogrammetry and Remote Sensing, 2012: 167-172.
    [20]
    WEIL J. The synthesis of cloth objects[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 49-54. DOI: 10.1145/15886.15891
    [21]
    ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501-519. DOI: 10.3390/rs8060501
    [22]
    WANG G, WANG Q, LIU Sh T, et al. Method of building extraction from UAV oblique photography point cloud based on cloth simulation[J]. Bulletin of Surveying and Mapping, 2020(10): 97-100.
  • Cited by

    Periodical cited type(8)

    1. 王建宇. 基于自适应邻域特征估算与优选的电力线提取. 资源导刊. 2025(04): 33-35 .
    2. 袁超,李元达,陈昌耀,刘建明. 利用自适应邻域特征估算与优选提取电力线. 地理空间信息. 2025(03): 58-60+65 .
    3. 杨文杰,裴少通,刘云鹏,胡晨龙,杨瑞,张行远. 基于改进Point Net++的输电线路关键部位点云语义分割研究. 高电压技术. 2024(05): 1943-1953 .
    4. 柳翠,陈国洲,褚宁,张宁. 从城市道路点云数据中快速提取架空线路及其参数. 北京测绘. 2024(07): 1004-1009 .
    5. 范亚洲,李国强. 输电线路走廊地物到导线危险距离定位方法. 沈阳工业大学学报. 2024(06): 748-753 .
    6. 宋向荣. 基于机载LiDAR点云的电力线提取与三维重建. 北京测绘. 2023(02): 254-259 .
    7. 曹中森. 基于机载LiDAR点云数据的电力线自动提取方法与研究. 经纬天地. 2023(04): 43-46+81 .
    8. 储栋,王磊,李靖宇,李忠,黄金中,李世保. 基于WPA-CSF的地面点云滤波方法研究. 地球物理学进展. 2023(05): 1919-1930 .

    Other cited types(3)

Catalog

    Article views (9) PDF downloads (6) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return