Citation: | HUANG Haibo, SUN Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. LASER TECHNOLOGY, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019 |
[1] |
XU B Sh. Remanufacture engineering and its development in China[J]. China Surface Engineering, 2010, 23(2): 1-6(in Chinese).
|
[2] |
HAN Y Y, LU J J, LI J F, et al. Lathe spindle remanufacturing based on laser cladding technology[J]. China Surface Engineering, 2015, 28(6): 147-153(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BMGC201506025.htm
|
[3] |
LU Y Zh, LEI W N, REN W B, et al. Matching and strengthening between Inconel718 cladding and K418 alloy blades by laser remanufacturing[J]. Laser Technology, 2020, 44(1): 54-60(in Chinese).
|
[4] |
GUO Sh R, SHANG H Ch, CUI L J, et al. Effects of laser cladding layers width on total indicated runout characteristics of steam turbine rotor surface[J]. Rare Metal Materials and Engineering, 2017, 46(3): 612-616. DOI: 10.1016/S1875-5372(17)30105-4
|
[5] |
GUO Sh R, YAO J H. Research on microstructure of laser cladding coatings on the surface of steam turbine rotor[J]. Laser & Infrared, 2016, 46(5): 532-536(in Chinese).
|
[6] |
CHEN L, GU Ch Zh, XIE P L. Numerical analysis of temperature field in laser cladding on tooth surface of helical gear shaft[J]. Chin-ese Journal of Lasers, 2011, 38(3): 0303006(in Chinese). DOI: 10.3788/CJL201138.0303006
|
[7] |
CUI L J, YU J H, GUO Sh R, et al. Laser cladding process and experimental study of pick based on Ni-based alloy[J]. Applied Laser, 2018, 38(5): 720-725(in Chinese).
|
[8] |
PENARANDA X, MORALEJO S, LAMIKIZ A, et al. An adaptive laser cladding methodology for blade tip repair[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9/12): 4337-4343. http://www.onacademic.com/detail/journal_1000039910334410_6e8e.html
|
[9] |
CALLEJA A, TABERNERO I, EALO J A, et al. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding[J]. International Journal of Advanced Manufacturing Technology, 2014, 74 (9/12): 1219-1228. http://www.onacademic.com/detail/journal_1000036871379910_3cbb.html
|
[10] |
ZHAI J H, XU H Y, LIU Zh J, et al. Experimental study on laser cladding of Ni-based alloys on spheroidal graphite cast iron surface[J]. Laser & Optoelectronics Progress, 2017, 54 (10): 101412(in Chinese). http://www.researchgate.net/publication/320286288_Experimental_Study_on_Laser_Cladding_of_Ni-Based_Alloys_on_Spheroidal_Graphite_Cast_Iron_Surface
|
[11] |
ZHOU Sh F, ZENG X Y, HU Q W. Realization of laser cladding and crack-free ceramic-metal composite coatings[J]. Journal of Applied Optics, 2008, 29(1): 76-80(in Chinese). http://www.opticsjournal.net/Abstract.htm?aid=OJ080817000129HeKgNj
|
[12] |
ZHENG Ch Zh. Study on crack mechanism of laser cladding Ni based alloy[J]. China Metal Bulletin, 2018, 998(11): 83-84(in Chinese).
|
[13] |
CAO Y N, ZHANG Y M, JIE X H, et al. Study on control of crack in laser cladding Ni-based coating on steel[J]. Hot Working Technology, 2012, 41(18): 133-136(in Chinese).
|
[14] |
FU F X, CHANG G R, ZHAO X X, et al. Influence of laser spot diameter on cladding layer cracking[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031401(in Chinese). http://www.opticsjournal.net/ViewObject.htm?oid=OJ150205000004iORnUq&otype=OJ
|
[15] |
LIU P L, SUN W L, WANG K D, et al. Effect of scanning speed on the properties of laser cladding nickel-based alloy coating[J]. Laser Technology, 2018, 42(6): 845-848(in Chinese).
|
[16] |
HAO Y B, WANG J, YANG P, et al. Microstructures and properties of tin-based babbitt metal prepared by laser cladding deposition[J]. Chinese Journal of Lasers, 2020, 47(8): 0802009(in Chin-ese). DOI: 10.3788/CJL202047.0802009
|
[17] |
ZHANG F Zh, SUN W L, WANG K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology, 2019, 48(1): 168-174(in Chinese). DOI: 10.1007/s00170-020-05969-5
|
[18] |
LIU H F, TAN C K I, WEI Y F, et al. Laser-cladding and interface evolutions of Inconel625 alloy on low alloy steel substrate upon heat and chemical treatments[J]. Surface and Coatings Technology, 2020, 404 (12): 126607. http://www.sciencedirect.com/science/article/pii/S0257897220312779
|
[19] |
CHEN S, LI R, ZHENG Q, et al. Layered microstructure distribution and forming mechanism of laser-processed Ni-Fe-B-Si-Nb-C amorphous composite coatings[J]. Materials Transactions, 2016, 57(10): 1807-1810. DOI: 10.2320/matertrans.M2016189
|
[20] |
WANG Zh Y, LIN J, LEI Y P, et al. Microstructure and properties of Stellite6 coating prepared by laser cladding[J]. Laser & Infrared, 2020, 50(10): 1172-1177(in Chinese). http://www.sciencedirect.com/science/article/pii/S1003632620652736
|
[1] | YANG Kaixin, SUN Wenlei, XIAO Qi, CHEN Zihao. Study on hardness and wear resistance of laser cladding Fe06+(TiC/Mo) composite coatings[J]. LASER TECHNOLOGY, 2023, 47(3): 393-399. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.017 |
[2] | BA Yi, HAN Shanguo, REN Xianghui, SHI Wenqing, HUANG Jinyu, HUANG Jiang, XIE Yuping, HE Kuanfang. Influence of different power on laser swing welding of steel/aluminum dissimilar materials[J]. LASER TECHNOLOGY, 2022, 46(5): 636-640. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.009 |
[3] | CHEN Shungao, ZHANG Xiaoming, ZHENG Qichi, LI Ruifeng. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2017, 41(6): 904-908. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.027 |
[4] | ZHANG Pei-lei, DING Min, YAO Shun, YAO Cheng-wu. Research of laser transformation hardening on mild steel[J]. LASER TECHNOLOGY, 2009, 33(6): 586-589. DOI: 10.3969/j.issn.1001-3806.2009.06.008 |
[5] | SONG Chuan-wang, LI Ming-xi. Effect of nano-CeO2 on the microstructure and properties of laser clad nickel-based alloy coating[J]. LASER TECHNOLOGY, 2006, 30(3): 228-231. |
[6] | Shi Yan, Zhang Hong, Xu Chunying, Wang Cunshan. Study on 18Cr2Ni4W steel treated by carburizing and laser transformation hardening[J]. LASER TECHNOLOGY, 2003, 27(2): 113-115. |
[7] | Dai Yi, Huang Wen-rong, Tang Guang-ping. Study on the laser surface hardening technology of 4Cr13 stainless steel[J]. LASER TECHNOLOGY, 2002, 26(3): 177-179. |
[8] | Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346. |
[9] | Zhou Erhua, Zeng Xiaoyan, Wu Xinwei, Zhu Beidi. Study on laser cladding of Fe-WC ceramic metal composite coating[J]. LASER TECHNOLOGY, 1997, 21(1): 34-37. |
[10] | Zhang Siyu, Wang Biben, Zheng Kequan. Study of laser smelting-cladding WC-TiC-SiC-Co on carbon steel surface[J]. LASER TECHNOLOGY, 1994, 18(2): 110-113. |
1. |
李翔,陈雪辉,邵昆,陈远龙. 基于激光表面处理技术的轴承表面性能提高研究现状. 机电工程. 2025(01): 51-61 .
![]() | |
2. |
董子豪,孙长青,方镜森,王超. 基于激光熔覆技术Stellite6涂层厚度对于界面结合强度的影响. 沈阳工程学院学报(自然科学版). 2025(01): 91-96 .
![]() | |
3. |
刘丽兰,李思聪,豆卫涛,韩飞燕,林坤. 316L不锈钢表面激光熔覆Ni60合金涂层的工艺优化与性能研究. 中国激光. 2024(16): 118-131 .
![]() | |
4. |
陈熙淼,师文庆,王杉杉,程才,吴腾,朱志凯. Ni/MoS_2含量对TC4钛合金表面激光熔覆Ni60涂层成形及性能的影响. 应用激光. 2024(12): 46-52 .
![]() | |
5. |
胡泽宇,李洋,刘进,蔡兰蓉,谭娜. 超高速激光熔覆涂层成形及关键性能研究进展. 激光与光电子学进展. 2023(01): 41-50 .
![]() | |
6. |
林坤,张爱琴,张建广,史秀宝. 镍基合金表面激光熔覆钴基合金涂层的性能研究. 粘接. 2023(08): 119-121 .
![]() | |
7. |
晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 .
![]() | |
8. |
陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 .
![]() | |
9. |
韩基泰. 激光功率对Ni60/WC涂层组织演变及力学性能的影响. 金属热处理. 2023(12): 65-73 .
![]() | |
10. |
吴腾,师文庆,谢林圯,龚美美,黄江,谢玉萍,何宽芳. 激光熔覆铁基TiC复合涂层成形质量的控制方法. 激光技术. 2022(03): 344-354 .
![]() | |
11. |
李时春,莫彬,王昆明,肖罡,张鹏飞. 激光增材制造金刚石/Ni-Cr合金的裂纹特征. 材料热处理学报. 2022(09): 176-185 .
![]() |