Advanced Search
HUANG Haibo, SUN Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. LASER TECHNOLOGY, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
Citation: HUANG Haibo, SUN Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. LASER TECHNOLOGY, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019

Influence of laser cladding process parameters on crack and thickness of Ni60

More Information
  • Received Date: December 06, 2020
  • Revised Date: December 21, 2020
  • Published Date: November 24, 2021
  • In order to study the influence of process parameters on crack and thickness of Ni60 laser cladding, the orthogonal experiment was designed by laser cladding Ni60 powder on the surface of 45# steel. The primary and secondary factors affecting the crack formation and coating thickness were analyzed, then, the range analysis method was carried out to obtain the optimal process parameters with the least cracks.The result showesthat the affecting order of crack is that scanning speed > powder feeding rate > laser power; and the process parameters with the least cracks areas follows: Laser power is 1400W, scanning speed is 4.0mm/s, powder feeding rate is 1.0r/min, and thereis only a short crack at the initial position of cladding by using the process parameter. The order of influence on coating thickness is as follows: powder feeding rate > scanning speed. Through microhardness test, the hardness of cladding layer is 3.3 times of that of substrate. Through scanning electron microscope analysis, the grain structure of cladding layer is uniform, and a good metallurgical combination with substrateis formed, which provided a reference for the engineering application of Ni60 alloy powder laser cladding.
  • [1]
    XU B Sh. Remanufacture engineering and its development in China[J]. China Surface Engineering, 2010, 23(2): 1-6(in Chinese).
    [2]
    HAN Y Y, LU J J, LI J F, et al. Lathe spindle remanufacturing based on laser cladding technology[J]. China Surface Engineering, 2015, 28(6): 147-153(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BMGC201506025.htm
    [3]
    LU Y Zh, LEI W N, REN W B, et al. Matching and strengthening between Inconel718 cladding and K418 alloy blades by laser remanufacturing[J]. Laser Technology, 2020, 44(1): 54-60(in Chinese).
    [4]
    GUO Sh R, SHANG H Ch, CUI L J, et al. Effects of laser cladding layers width on total indicated runout characteristics of steam turbine rotor surface[J]. Rare Metal Materials and Engineering, 2017, 46(3): 612-616. DOI: 10.1016/S1875-5372(17)30105-4
    [5]
    GUO Sh R, YAO J H. Research on microstructure of laser cladding coatings on the surface of steam turbine rotor[J]. Laser & Infrared, 2016, 46(5): 532-536(in Chinese).
    [6]
    CHEN L, GU Ch Zh, XIE P L. Numerical analysis of temperature field in laser cladding on tooth surface of helical gear shaft[J]. Chin-ese Journal of Lasers, 2011, 38(3): 0303006(in Chinese). DOI: 10.3788/CJL201138.0303006
    [7]
    CUI L J, YU J H, GUO Sh R, et al. Laser cladding process and experimental study of pick based on Ni-based alloy[J]. Applied Laser, 2018, 38(5): 720-725(in Chinese).
    [8]
    PENARANDA X, MORALEJO S, LAMIKIZ A, et al. An adaptive laser cladding methodology for blade tip repair[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9/12): 4337-4343. http://www.onacademic.com/detail/journal_1000039910334410_6e8e.html
    [9]
    CALLEJA A, TABERNERO I, EALO J A, et al. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding[J]. International Journal of Advanced Manufacturing Technology, 2014, 74 (9/12): 1219-1228. http://www.onacademic.com/detail/journal_1000036871379910_3cbb.html
    [10]
    ZHAI J H, XU H Y, LIU Zh J, et al. Experimental study on laser cladding of Ni-based alloys on spheroidal graphite cast iron surface[J]. Laser & Optoelectronics Progress, 2017, 54 (10): 101412(in Chinese). http://www.researchgate.net/publication/320286288_Experimental_Study_on_Laser_Cladding_of_Ni-Based_Alloys_on_Spheroidal_Graphite_Cast_Iron_Surface
    [11]
    ZHOU Sh F, ZENG X Y, HU Q W. Realization of laser cladding and crack-free ceramic-metal composite coatings[J]. Journal of Applied Optics, 2008, 29(1): 76-80(in Chinese). http://www.opticsjournal.net/Abstract.htm?aid=OJ080817000129HeKgNj
    [12]
    ZHENG Ch Zh. Study on crack mechanism of laser cladding Ni based alloy[J]. China Metal Bulletin, 2018, 998(11): 83-84(in Chinese).
    [13]
    CAO Y N, ZHANG Y M, JIE X H, et al. Study on control of crack in laser cladding Ni-based coating on steel[J]. Hot Working Technology, 2012, 41(18): 133-136(in Chinese).
    [14]
    FU F X, CHANG G R, ZHAO X X, et al. Influence of laser spot diameter on cladding layer cracking[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031401(in Chinese). http://www.opticsjournal.net/ViewObject.htm?oid=OJ150205000004iORnUq&otype=OJ
    [15]
    LIU P L, SUN W L, WANG K D, et al. Effect of scanning speed on the properties of laser cladding nickel-based alloy coating[J]. Laser Technology, 2018, 42(6): 845-848(in Chinese).
    [16]
    HAO Y B, WANG J, YANG P, et al. Microstructures and properties of tin-based babbitt metal prepared by laser cladding deposition[J]. Chinese Journal of Lasers, 2020, 47(8): 0802009(in Chin-ese). DOI: 10.3788/CJL202047.0802009
    [17]
    ZHANG F Zh, SUN W L, WANG K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology, 2019, 48(1): 168-174(in Chinese). DOI: 10.1007/s00170-020-05969-5
    [18]
    LIU H F, TAN C K I, WEI Y F, et al. Laser-cladding and interface evolutions of Inconel625 alloy on low alloy steel substrate upon heat and chemical treatments[J]. Surface and Coatings Technology, 2020, 404 (12): 126607. http://www.sciencedirect.com/science/article/pii/S0257897220312779
    [19]
    CHEN S, LI R, ZHENG Q, et al. Layered microstructure distribution and forming mechanism of laser-processed Ni-Fe-B-Si-Nb-C amorphous composite coatings[J]. Materials Transactions, 2016, 57(10): 1807-1810. DOI: 10.2320/matertrans.M2016189
    [20]
    WANG Zh Y, LIN J, LEI Y P, et al. Microstructure and properties of Stellite6 coating prepared by laser cladding[J]. Laser & Infrared, 2020, 50(10): 1172-1177(in Chinese). http://www.sciencedirect.com/science/article/pii/S1003632620652736
  • Related Articles

    [1]YANG Kaixin, SUN Wenlei, XIAO Qi, CHEN Zihao. Study on hardness and wear resistance of laser cladding Fe06+(TiC/Mo) composite coatings[J]. LASER TECHNOLOGY, 2023, 47(3): 393-399. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.017
    [2]BA Yi, HAN Shanguo, REN Xianghui, SHI Wenqing, HUANG Jinyu, HUANG Jiang, XIE Yuping, HE Kuanfang. Influence of different power on laser swing welding of steel/aluminum dissimilar materials[J]. LASER TECHNOLOGY, 2022, 46(5): 636-640. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.009
    [3]CHEN Shungao, ZHANG Xiaoming, ZHENG Qichi, LI Ruifeng. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2017, 41(6): 904-908. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.027
    [4]ZHANG Pei-lei, DING Min, YAO Shun, YAO Cheng-wu. Research of laser transformation hardening on mild steel[J]. LASER TECHNOLOGY, 2009, 33(6): 586-589. DOI: 10.3969/j.issn.1001-3806.2009.06.008
    [5]SONG Chuan-wang, LI Ming-xi. Effect of nano-CeO2 on the microstructure and properties of laser clad nickel-based alloy coating[J]. LASER TECHNOLOGY, 2006, 30(3): 228-231.
    [6]Shi Yan, Zhang Hong, Xu Chunying, Wang Cunshan. Study on 18Cr2Ni4W steel treated by carburizing and laser transformation hardening[J]. LASER TECHNOLOGY, 2003, 27(2): 113-115.
    [7]Dai Yi, Huang Wen-rong, Tang Guang-ping. Study on the laser surface hardening technology of 4Cr13 stainless steel[J]. LASER TECHNOLOGY, 2002, 26(3): 177-179.
    [8]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [9]Zhou Erhua, Zeng Xiaoyan, Wu Xinwei, Zhu Beidi. Study on laser cladding of Fe-WC ceramic metal composite coating[J]. LASER TECHNOLOGY, 1997, 21(1): 34-37.
    [10]Zhang Siyu, Wang Biben, Zheng Kequan. Study of laser smelting-cladding WC-TiC-SiC-Co on carbon steel surface[J]. LASER TECHNOLOGY, 1994, 18(2): 110-113.
  • Cited by

    Periodical cited type(11)

    1. 李翔,陈雪辉,邵昆,陈远龙. 基于激光表面处理技术的轴承表面性能提高研究现状. 机电工程. 2025(01): 51-61 .
    2. 董子豪,孙长青,方镜森,王超. 基于激光熔覆技术Stellite6涂层厚度对于界面结合强度的影响. 沈阳工程学院学报(自然科学版). 2025(01): 91-96 .
    3. 刘丽兰,李思聪,豆卫涛,韩飞燕,林坤. 316L不锈钢表面激光熔覆Ni60合金涂层的工艺优化与性能研究. 中国激光. 2024(16): 118-131 .
    4. 陈熙淼,师文庆,王杉杉,程才,吴腾,朱志凯. Ni/MoS_2含量对TC4钛合金表面激光熔覆Ni60涂层成形及性能的影响. 应用激光. 2024(12): 46-52 .
    5. 胡泽宇,李洋,刘进,蔡兰蓉,谭娜. 超高速激光熔覆涂层成形及关键性能研究进展. 激光与光电子学进展. 2023(01): 41-50 .
    6. 林坤,张爱琴,张建广,史秀宝. 镍基合金表面激光熔覆钴基合金涂层的性能研究. 粘接. 2023(08): 119-121 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 韩基泰. 激光功率对Ni60/WC涂层组织演变及力学性能的影响. 金属热处理. 2023(12): 65-73 .
    10. 吴腾,师文庆,谢林圯,龚美美,黄江,谢玉萍,何宽芳. 激光熔覆铁基TiC复合涂层成形质量的控制方法. 激光技术. 2022(03): 344-354 . 本站查看
    11. 李时春,莫彬,王昆明,肖罡,张鹏飞. 激光增材制造金刚石/Ni-Cr合金的裂纹特征. 材料热处理学报. 2022(09): 176-185 .

    Other cited types(12)

Catalog

    Article views (5) PDF downloads (4) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return