Advanced Search
CHEN Shungao, ZHANG Xiaoming, ZHENG Qichi, LI Ruifeng. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2017, 41(6): 904-908. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.027
Citation: CHEN Shungao, ZHANG Xiaoming, ZHENG Qichi, LI Ruifeng. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2017, 41(6): 904-908. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.027

Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding

More Information
  • Received Date: December 04, 2016
  • Revised Date: January 10, 2017
  • Published Date: November 24, 2017
  • In order to study effect of rare earth element CeO2 on laser cladding coatings, cladding layers with different contents of rare earth oxides were prepared by laser cladding overlap processing, using 45# steel as substrate, Ni60 and Ni60+CeO2 powder as cladding material. Through experiments of cladding layer dye test, microstructure observation, and microhardness mensuration, effect of different contents of rare earth oxides on cladding layer surface cracks' number, microstructure, and hardness was analyzed. The results show that the optimal doping mass fraction of CeO2 is 0.004. The crack number of the cladding coating is reduced and the micro structure of the cladding layer is even and tiny with the doping of rare earth element CeO2. The microhardness of the cladding coating surface is much higher than that of the matrix. The Vivtorinox hardness is 3.6 times of that of the matrix. The hardness of the lapping zone is about 3 times of that of the matrix. The addition of rare earth element can restrain the crack, refine the grain and improve the hardness of cladding layer to some extent.
  • [1]
    YANG X Q, LI Y J, MA Q Sh, et al. Present status and development of laser cladding technology[J]. Machinery Manufacturing Abstracts-Welding Section, 2015(1):30-34(in Chinese).
    [2]
    JU Y, GUO Sh Y, LI Z Q. Research progress of laser alloying and cladding treatment on metal surface[J].Materials Science and Engineering, 2002, 20(1): 142-144(in Chinese).
    [3]
    CHAO M J, YANG K, YUAN B, et al. Effect of In2O3 on Ni60 laser layer[J]. Welding Journal, 2005, 26(8): 27-30(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77c6b9081e73e8ad17af9320227eaf5e
    [4]
    SU Zh J. Effect of rare earth elements on Ni60 self fluxing alloy coating and the performance of the organization[D].Jiaozuo: Henan Polytechnic University, 2010: 1-42(in Chinese).
    [5]
    HU M L, XIE Ch Sh, ZHU B L, et al. Fractogragy study on cracking behavior of laser-clad multitrack coatings [J]. Transactions of Materials and Heat Treatment, 2001, 22(2):23-26(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JSCL200102009.htm
    [6]
    SHEN Y F, CHEN J Zh, FENG Zh Ch, et al. Distribution and behavior of rare earth in laser coating[J]. Journal of Rear Earths, 1998, 16(3):19-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YXTB803.003.htm
    [7]
    XU Y, JI H, CHEN X, et al.Effect of laser surface melting treatment on the structure and corrosion resistance of rare earth permeating layer of pure iron[J]. Journal of the Rear Earth Society, 2001, 19(4):346-349(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgxtxb200104013
    [8]
    JIAO X, WU G. Study on the crack in laser cladding layer[J]. Science and Technology Information, 2013(1): 223-224(in Chinese).
    [9]
    XU J L, LI Zh G, GUO H F, et al. Research progress of laser cladding layer crack defects[J]. Hot Working Technology, 2013, 42(8): 6-9(in Chinese).
    [10]
    TASSIN C, LAROUDIE F, PONS M, et al. Improvement of the wear resistance of 316L stainless steel by laser sur-face alloying[J]. Surface & Coatings Technology, 1996, 80(1):207-210. http://www.sciencedirect.com/science/article/pii/0257897295027130
    [11]
    ZHENG B J, WEI J Y, JIANG Y H, et al. Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. Laser Technology, 2016, 40(3): 433-435(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201603028
    [12]
    GE Y Q, WANG W X. Microstructure and wear resistance of laser cladding Ni60 alloy coating on magnesi-um alloy surface under different laser power[J]. China Surface Engineering, 2012, 25(1):45-50(in Chinese).
    [13]
    YU R H. Solid molecular and empirical electron eheory[J]. Chinese Science Bulletin, 1981, 26(4): 206-209(in Chinese).
    [14]
    SONG X H, ZOU Y F, XING J K, et al.Comparison between laser cladding Fe- based and Ni-based alloy coatings on 35CrMo[J]. Laser Technology, 2015, 39(1): 40-44(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201501008.htm
    [15]
    QIU X W, LIU Ch G. Microstructure and properties of NiCrBSi alloy coated by multi pass lap laser clad-ding[J]. Materials Protection, 2011, 44(6): 62-64(in Chinese).
  • Related Articles

    [1]CAI Xuming, LI Xiao, LIU Yuxian, HE Chunhua, LIN Junjie. Laser spot center location algorithm based on gray histogram[J]. LASER TECHNOLOGY, 2023, 47(2): 273-279. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.018
    [2]WANG Fubin, LIU Hefei, WANG Rui, ZENG Kai. Sub-pixel adaptive center extraction of line structured light stripe[J]. LASER TECHNOLOGY, 2021, 45(3): 350-356. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.015
    [3]WANG Guojun, HUANG Yaxin, ZHAO Qilin, ZHANG Dongdong. Study on the robustness of spot center based on adaptive region[J]. LASER TECHNOLOGY, 2020, 44(5): 616-622. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.015
    [4]ZHANG Jing, WU Youyu. Locating algorithm of optical fiber spot center based on FPGA[J]. LASER TECHNOLOGY, 2017, 41(5): 769-774. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.030
    [5]SUN Lihuan, ZHAO Xiaoyang, GAO Lingyu, LI Xinghua. Measurement of laser spot center position based on sub pixel positioning technology[J]. LASER TECHNOLOGY, 2017, 41(4): 511-514. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.011
    [6]WANG Jiefei, LIU Jieyu, ZHAO Han, SHEN Qiang. An improved sub-pixel positioning method of laser spot center[J]. LASER TECHNOLOGY, 2015, 39(4): 476-479. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.010
    [7]ZHANG Hai-zhuang, YAO Mei, LEI Ping, LI Peng, ZENG Qing-ping. Research of image processing method of far-field laser spots[J]. LASER TECHNOLOGY, 2013, 37(4): 460-463. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.010
    [8]LI Hong-jun, XU Shu-yan, YAN De-jie. Research of remote sensing image matching with sub-pixel accuracy[J]. LASER TECHNOLOGY, 2008, 32(5): 493-495.
    [9]WANG Fang-rong, ZHAO DING-xuan, LIAO Zong-jian, ZHANG Yu. Research of laser spot center space orientation[J]. LASER TECHNOLOGY, 2005, 29(1): 87-89.
    [10]Lü Xiaoxu, Zhong Liyun, Zhang Yongan, She Canlin, Xiong Bingheng, Tung H. Jeong. Pixelated holographic display system[J]. LASER TECHNOLOGY, 2002, 26(4): 267-269.
  • Cited by

    Periodical cited type(3)

    1. 吕子尚,胡劲华,任丹萍,赵继军. 平顶型CLPG-CFBG级联结构中温度应力传感特性的研究. 激光技术. 2024(01): 65-70 . 本站查看
    2. 欧阳烨锋,崔建军,张宝武,陈恺,杨宁,方振远. 基于图像取反的同心圆环半径和圆心提取方法. 激光技术. 2024(01): 135-139 . 本站查看
    3. 刘林,黄利元,肖宝森. 光纤光栅干涉传感器位移测量误差高精度校准方法. 激光杂志. 2024(07): 97-101 .

    Other cited types(3)

Catalog

    Article views (5) PDF downloads (11) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return