Advanced Search
WEI Shuo, ZHAO Nanxiang, LI Minle, HU Yihua. Single photon denoising algorithm combined with improved DBSCAN and statistical filtering[J]. LASER TECHNOLOGY, 2021, 45(5): 601-606. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.011
Citation: WEI Shuo, ZHAO Nanxiang, LI Minle, HU Yihua. Single photon denoising algorithm combined with improved DBSCAN and statistical filtering[J]. LASER TECHNOLOGY, 2021, 45(5): 601-606. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.011

Single photon denoising algorithm combined with improved DBSCAN and statistical filtering

More Information
  • Received Date: September 28, 2020
  • Revised Date: December 06, 2020
  • Published Date: September 24, 2021
  • In order to solve the problem of excessive noise point clouds in the photon counting lidar detection data, a single photon point cloud denoising method based on a combination of improved density-based spatial clustering of applications with noise (DBSCAN) algorithm and statistical filtering algorithm was adopted. The actual flight data of multiple altimeter beam experimental lidar provided by National Aeronautics and Space Administration was experimental data. First, the point cloud density was obtained through the k-dimensional tree for rough denoising, and then the improved DBSCAN algorithm and statistical filtering algorithm were used for fine denoising. The theoretical analysis and experimental verification has achieved good results. The results show that the target point cloud recognition rate in the experimental area is above 85%, and the performance is better than the classic radius filtering algorithm. This result is helpful for photon data denoising.
  • [1]
    XU Q, XIE X M, ZHANG W, et al. The progress of semiconductor quantum dot based quantum emitter [J]. Laser Technology, 2020, 44(5): 575-586(in Chinese).
    [2]
    TANG X M, LI G Y. Development and prospect of laser altimetry satellite [J]. International Space, 2017(11): 13-18(in Chinese).
    [3]
    LUO H J, ZHOU R L, ZHANG Y T. Theoretical analysis of detection performance and range accuracy of photon ladar[J]. Laser Technology, 2014, 38(3): 411-416(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201403028.htm
    [4]
    SHU R, HUANG G H, HOU L B, et al. Multi-channel photon counting three-dimensional imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode[J]. Proceedings of the SPIE, 2012, 8542: 1-10. DOI: 10.1117/12.974365
    [5]
    FANG J, SHE Ch, LIU J P. A denoising method based on photon counting lidar[J]. Ship Electronic Warfare, 2019, 42(4): 10-15(in Chinese).
    [6]
    OH M S, KONG H J, KIM T H, et al. Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode[J]. Review of Scientific Instruments, 2010, 81(3): 1-7. http://europepmc.org/abstract/MED/20370163
    [7]
    FOUCHE D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics, 2003, 42(27): 5388-5398. DOI: 10.1364/AO.42.005388
    [8]
    MILSTEIN A B, JIANG L A, LUU J X. Acquisition algorithm for direct-detection ladars with Geiger-mode avalanche photodiodes[J]. Applied Optics, 2008, 47(2): 296-311. DOI: 10.1364/AO.47.000296
    [9]
    HORAN K H, KEREKES J P. An automated statistical analysis approach to noise reduction for photon-counting lidar systems [C]//IEEE International Geoscience and Remote Sensing Symposium. NewYork, USA: IEEE, 2013: 4336-4339.
    [10]
    HERZFELD U C, MCDONALD B W, WALLIN B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4) : 2109-2125. DOI: 10.1109/TGRS.2013.2258350
    [11]
    LI K, ZHANG Y Sh, TONG X Ch, et al. Research on de-noising and filtering algorithm of single photon lidar data[J]. Navigation and Control, 2020, 19(1): 67-76(in Chinese).
    [12]
    LI M, GUO Y, YANG G, et al. A push-broom photon counting lidar point cloud filtering algorithm and its verification[J]. Science Technology and Engineering, 2017, 17(9): 53-58 (in Chinese).
    [13]
    XU Y T, LI G Y, QIU Ch X, et al. Single-photon laser data processing technology based on terrain correlation and least square curve fitting[J]. Infrared and Laser Engineering, 2019, 48(12): 148-157(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HWYJ201912019.htm
    [14]
    MCGILL M, MARKUS T, SCOTT V S, et al. The multiple altimeter beam experimental lidar (MABEL): An airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 345-352. DOI: 10.1175/JTECH-D-12-00076.1
    [15]
    BRUNT K M, NEUMANN T A, AMUNDSON J M, et al. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development[J]. Cryosphere, 2016, 10(4): 1707-1719. DOI: 10.5194/tc-10-1707-2016
    [16]
    YU F L. Research on ladar 3-D point cloud data processing methods based on single photon detection [D]. Harbin: Harbin University of Technology, 2016: 57-63(in Chinese).
    [17]
    ZHOU H, LI S, WANG L X, et al. Influence of noise on range error for satellite laser altimeter [J]. Infrared and Laser Engineering, 2015, 449(8): 2256 - 2261(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_infrared-laser-engineering_thesis/0201236126080.html
    [18]
    LIU Y, SUN Sh Y. Laser point cloud denoising based on principal component analysis and surface fitting[J]. Laser Technology, 2020, 44(4): 497-502(in Chinese).
    [19]
    WANG T, SHEN Y H, YAO J Q. Research on laser radar echo signal denoising based on wavelet threshold method[J]. Laser Technology, 2019, 43(1): 63-68(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901013.htm
    [20]
    LIU Zh P, YU Q Y, CHA J F. Rapid transformation from spatial rectangular coordinates to two common coordinates[J]. Science of Surveying and Mapping, 2015, 40(3): 8-11(in Chinese).
    [21]
    SANG J. Non-iteration method for inversion of space geodetic rectangular coordinates and geodetic coordinates[J]. Bulletin of Surveying and Mapping, 2000(5): 37-39(in Chinese).
  • Related Articles

    [1]PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013
    [2]TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019
    [3]PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
    [4]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [5]ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023
    [6]WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013
    [7]WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023
    [8]WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019
    [9]YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.
  • Cited by

    Periodical cited type(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 .
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 .
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 .
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 .
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 .
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 .
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 .
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 .
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 .
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 .
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 .
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 .
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 .
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 .
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 .
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 .
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 .
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 .
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 .
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 .

    Other cited types(12)

Catalog

    Article views (14) PDF downloads (19) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return