Advanced Search
WANG Qi, YOU Libing, WANG Hongwei, ZHANG Yanlin, HU Zexiong, FAN Jun, FANG Xiaodong, LUO Le. Application of elemental imaging based on LIBS in paleoclimate research[J]. LASER TECHNOLOGY, 2021, 45(4): 492-499. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.013
Citation: WANG Qi, YOU Libing, WANG Hongwei, ZHANG Yanlin, HU Zexiong, FAN Jun, FANG Xiaodong, LUO Le. Application of elemental imaging based on LIBS in paleoclimate research[J]. LASER TECHNOLOGY, 2021, 45(4): 492-499. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.013

Application of elemental imaging based on LIBS in paleoclimate research

More Information
  • Received Date: August 26, 2020
  • Revised Date: October 20, 2020
  • Published Date: July 24, 2021
  • Paleoclimatology is a discipline that studies the past climate of the earth, and its purpose is to predict the future climate change, to solve problems related to the environment, resources and so on. Based on laser-induced breakdown spectroscopy(LIBS), the complex and diverse large area paleoclimatology samples can be quickly, accurately and in situ analyzed by the element imaging technology, and the element information that can be linked with the climate can be obtained. LIBS thus has a good application prospect in climate change research. This paper first introduces the basic principles of element imaging technology based on LIBS. Secondly, it reviews the instrument configuration of the currently commonly used imaging system, including laser light source, focusing system and spectral detection system. Finally, typical cases of analyzing paleoclimate agents based on LIBS element imaging technology at home and abroad is introduced. Therefore, this paper has a good guiding role for the application of element imaging technology based on LIBS in paleoclimate research.
  • [1]
    BRIARD J, PUCEAT E, VENNIN E, et al. Seawater paleotemperature and paleosalinity evolution in neritic environments of the mediterranean margin: insights from isotope analysis of bivalve shells[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109582. DOI: 10.1016/j.palaeo.2019.109582
    [2]
    FORTES F J, VADILLO I, STOLL H, et al. Spatial distribution of paleoclimatic proxies in stalagmite slabs using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(5): 868-873. DOI: 10.1039/c2ja10299d
    [3]
    YAN H, LIU C C, AN Z S, et al. Extreme weather events recorded by daily to hourly resolution biogeochemical proxies of marine giant clam shells[J]. Proceedings of the National Academy of Sciences, 2020, 117(13): 7038-7043. DOI: 10.1073/pnas.1916784117
    [4]
    HAHN D W, OMENETTO N. Laser-induced breakdown spectroscopy (LIBS), Part Ⅰ: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12): 335A-336A. DOI: 10.1366/000370210793561691
    [5]
    ONGE L S, DETALLE V, SABSABI M. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd∶ YAG laser pulses[J]. Spectrochimica Acta, 2002, B57(1): 121-135.
    [6]
    RAKOVSKY J, CERMAK P, MUSSET O, et al. A review of the development of portable laser induced breakdown spectroscopy and its applications[J]. Spectrochimica Acta, 2014, B101: 269-287.
    [7]
    GIACOMO A D, RAUDIUSO R, KORAL C, et al. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples[J]. Analytical Chemistry, 2013, 84(21): 10180-10187.
    [8]
    DELL'AGLIO M, ALRIFAI R, GIACOMO A D, et al. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review[J]. Spectrochimica Acta, 2018, B148: 105-112.
    [9]
    LASHERAS R J, PAULES D, ESCUDERO M, et al. Quantitative analysis of major components of mineral particulate matter by calibration free laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2020, B171: 105918.
    [10]
    CHEN X, LI X H, YU X, et al. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods[J]. Spectrochimica Acta, 2018, B139: 63-69.
    [11]
    ZORBA V, MAO X L, RUSSO R E, et al. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale[J]. Spectrochimica Acta, 2015, B113: 37-42.
    [12]
    RAKOVSKY J, MUSSET O, BUONCRISTIANI J, et al. Testing a portable laser-induced breakdown spectroscopy system on geological sample[J]. Spectrochimica Acta, 2012, B74/75: 57-65.
    [13]
    VARELA J A, AMADO J M, TOBAR M J, et al. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique[J]. Applied Surface Science, 2015, 336: 396-400. DOI: 10.1016/j.apsusc.2015.01.037
    [14]
    LOPEZ-QUINTAS I, MATEO M P, PINON V, et al. Mapping of mechanical specimens by laser induced breakdown spectroscopy method: Application to an engine valve[J]. Spectrochimica Acta, 2012, B74/75: 109-114.
    [15]
    LIN L Y, YAN X L, LIAO X Y, et al. Migration and arsenic adsorption study of starch-modified Fe-Ce oxide on a silicon-based micromodel observation platform[J]. Journal of Hazardous Materials, 2017, 338 (17): 202-207.
    [16]
    BOUE-BIGNE F. Laser-induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization[J]. Spectrochimica Acta, 2008, B63(10): 1122-1129.
    [17]
    ROMPPANEN S, HAKKANEN H, KASKI S. Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2017, B134: 69-74.
    [18]
    CHEN L, YOU L B, LUO X F, et al. Detection of Cd in table salt by LIBS technology[J]. Laser Technology, 2019, 43(1): 6-10(in Chinese).
    [19]
    STRYCKER B D, WANG K, SPRINGER M, et al. Chemical-specific imaging of shallowly buried objects using femtosecond laser pulses[J]. Applied Optics, 2013, 52(20): 4792-4796. DOI: 10.1364/AO.52.004792
    [20]
    MENUT D, FICHET P, LACOUR J L, et al. Micro-laser-induced breakdown spectroscopy technique: A powerful method for performing quantitative surface mapping on conductive and nonconductive samples[J]. Applied Optics, 2003, 42(30): 6063-6071. DOI: 10.1364/AO.42.006063
    [21]
    SANCEY L, MOTTO-ROS V, BUSSER B, et al. Laser spectrometry for multi-elemental imaging of biological tissues[J]. Scientific Reports, 2016, 4(1): 6065.
    [22]
    BONNORS B, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5): 810-815. DOI: 10.1177/0003702816638247
    [23]
    QUARLES C D, GONZALEZ J J, EAST L J, et al. Fluorine analysis using laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(7): 1238-1242. DOI: 10.1039/c4ja00061g
    [24]
    DARWICHE S, BENMANSOUR M, ELIEZER N, et al. Laser-induced breakdown spectroscopy for photovoltaic silicon wafer analysis[J]. Progress in Photovoltaics, 2012, 20(4): 463-471. DOI: 10.1002/pip.1209
    [25]
    CACERES J O, PELASCINI F, MOTTOROS V, et al. Megapixel multi-elemental imaging by laser-induced breakdown spectroscopy, a technology with considerable potential for paleoclimate studies[J]. Scientific Reports, 2017, 7(1): 5080. DOI: 10.1038/s41598-017-05437-3
    [26]
    LOPEZ-LOPEZ M, ALVAREZ-LLAMAS C, PISONERO J, et al. An exploratory study of the potential of LIBS for visualizing gunshot residue patterns[J]. Forensic Science International, 2017, 273: 124-131. DOI: 10.1016/j.forsciint.2017.02.012
    [27]
    SWEEYAPPLE M T, TASSIOS S. Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals[J]. American Mineralogist, 2015, 100(10): 2141-2151. DOI: 10.2138/am-2015-5165
    [28]
    HOESHE M, GORNUSHKIN L, MERK S, et al. Assessment of suitability of diode pumped solid state lasers for laser induced breakdown and Raman spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(2): 414-424. DOI: 10.1039/C0JA00038H
    [29]
    LI J M, HAO Z Q, ZHAO N, et al. Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence[J]. Optics Express, 2017, 25(5): 4945-4951. DOI: 10.1364/OE.25.004945
    [30]
    MANARD B T, QUARLES C D, WYLIE E M, et al. Laser ablation-inductively couple plasma-mass spectrometry/laser induced break down spectroscopy: A tandem technique for uranium particle characterization[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(9): 1680-1687. DOI: 10.1039/C7JA00102A
    [31]
    BRUNNBAUER L, MAYR M, LARISEGGER S, et al. Combined LA-ICP-MS/LIBS: Powerful analytical tools for the investigation of polymer alteration after treatment under corrosive conditions[J]. Scientific Reports, 2020, 10(1): 103-114. DOI: 10.1038/s41598-019-57096-1
    [32]
    MA Q L, MOTTO-ROS V, LEI W Q, et al. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2010, B65(8): 707-714.
    [33]
    LI H Y, CHENG H, WANG J, et al. Applications of laser induced breakdown spectroscopy to paleoclimate research: Reconstructing speleothem trace element records[J]. Quaternary Sciences, 2018, 38(6): 1549-1551(in Chinese).
    [34]
    LU Y, LI Y D, LI Y, et al. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy[J]. Spectrochimica Acta, 2015, B110: 63-69.
    [35]
    HAUSMANN N, SIOZOS P, LEMONIS A, et al. Elemental mapping of Mg/Ca intensity ratios in marine mollusc shells using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1467-1472. DOI: 10.1039/C7JA00131B
    [36]
    HAUSMANN N, PRENDERGAST A L, LEMONIS A, et al. Extensive elemental mapping unlocks Mg/Ca ratios as climate proxy in seasonal records of mediterranean limpets[J]. Scientific Reports, 2019, 9(1): 3698. DOI: 10.1038/s41598-019-39959-9
  • Related Articles

    [1]LIU Rongzhan. Design and experimental research of blue light homogenization system based on microlens array[J]. LASER TECHNOLOGY, 2024, 48(4): 499-504. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.007
    [2]HU Xuanyu, ZHENG Haoxuan, ZHENG Yi, DUAN Changcheng, XIAO Yu, XU Gang, TANG Xiahui. Research on modularization of 500 W blue semiconductor laser based on beam combination[J]. LASER TECHNOLOGY, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003
    [3]GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]FANG Yaoxin, GUO Baofeng, MA Chao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. LASER TECHNOLOGY, 2019, 43(5): 713-718. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.024
    [6]ZHAO Jianwei, JIANG Xiaowei, FANG Xiaomin, ZHAO Yanjuan, GE Zhengyang. Study on improving the extraction efficiency of blue light LED by metal gratings[J]. LASER TECHNOLOGY, 2019, 43(1): 58-62. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.012
    [7]HU Jiangtao, HUANG Feng, ZHANG Chu, LIU Bingqi, WANG Yuanbo. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. LASER TECHNOLOGY, 2015, 39(4): 492-496. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [8]LI Qiang, LIU Zhe, NAN Bingbing, GU Shuyin. Improved image super-resolution reconstruction based neighbor embedding[J]. LASER TECHNOLOGY, 2015, 39(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [9]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [10]Wang Pengfei, Zhang Dong, LÜ Baida, Sun Yingchun. Recent advances of diode-pumped thin disc-laser[J]. LASER TECHNOLOGY, 2003, 27(6): 551-553,566.
  • Cited by

    Periodical cited type(1)

    1. 周健文,姚纳,赵汗青,张云凡,焦蛟,孙旭,伍波. 大气湍流下超振荡望远成像的理论研究. 激光技术. 2023(01): 115-120 . 本站查看

    Other cited types(0)

Catalog

    Article views (2) PDF downloads (6) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return