Advanced Search
YUAN Quan, FENG Liqiang, LIU Hang. Half-cycle waveform control for generating ultra-wide harmonic spectral plateau[J]. LASER TECHNOLOGY, 2021, 45(4): 463-469. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.009
Citation: YUAN Quan, FENG Liqiang, LIU Hang. Half-cycle waveform control for generating ultra-wide harmonic spectral plateau[J]. LASER TECHNOLOGY, 2021, 45(4): 463-469. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.009

Half-cycle waveform control for generating ultra-wide harmonic spectral plateau

More Information
  • Received Date: June 17, 2020
  • Revised Date: August 24, 2020
  • Published Date: July 24, 2021
  • In order to obtain intense and broad harmonic spectral plateau, by numerical solution of time-dependent Schrödinger equation, the half-cycle waveform control for producing the optimal half-cycle harmonic emission conditions was proposed by using multi-color combined field. The results show that, by controlling the chirps of two-color field, the optimal negative half-cycle waveform can be obtained; while, by controlling the chirp delay, the optimal positive half-cycle waveform can be produced. Driven by the above waveforms, the harmonic cutoffs can be extended. Further, with the introduction of ultraviolet pulse, due to the ultraviolet resonance enhanced ionization, the harmonic intensity can be enhanced. Furthermore, when the ultraviolet energy meets the single and two photon resonance enhanced ionization, the harmonic intensity is remarkably enhanced. With the decrease of ultraviolet photon energy, the enhancement of harmonic intensity decreases. Finally, the single attosecond pulses of sub-50as can be obtained by superposing harmonics on the harmonic spectral plateau. The results are helpful for the control of high-order harmonic generation and the production of attosecond pulses.
  • [1]
    L'HUILLIER A, BALCOU P. High-order harmonic generation in rare gases with a 1ps 1053nm laser [J]. Physical Review Letters, 1993, 70 (6): 774-777. DOI: 10.1103/PhysRevLett.70.774
    [2]
    CORKUM P B. Plasma perspective on strong field multiphoton ionization [J]. Physical Review Letters, 1993, 71(13): 1994-1997. DOI: 10.1103/PhysRevLett.71.1994
    [3]
    LI L, ZHENG M, FENG L Q, et al. Waveform control in generations of intense water window attosecond pulses via multi-color combined field [J]. International Journal of Modern Physics, 2019, B33(13): 1950130. DOI: 10.1142/S0217979219501303?utm_source=TrendMD&utm_medium=cpc
    [4]
    LIU H, FENG L Q. Mid-infrared field phase measurement and a-ttosecond pulse generation [J]. Laser Technology, 2017, 41(2): 151-158 (in Chinese).
    [5]
    LI Y, FENG L Q, QIAO Y. Selective enhancement of single-order and two-order harmonics from He atom via two-color and three-color laser fields [J]. Chemical Physics, 2019, 527: 110497. DOI: 10.1016/j.chemphys.2019.110497
    [6]
    FENG L Q, LI Y, LIU H. High intensity attosecond pulse generation by the improved multi-cycle polarization gating technology [J]. Laser Technology, 2018, 42(4): 451-456 (in Chinese).
    [7]
    SANSONE G, BENEDETTI E, CALEGARI F, et al. Isolated single-cycle attosecond pulses [J]. Science, 2006, 314(5798): 443-446. DOI: 10.1126/science.1132838
    [8]
    ZHANG Q B, LU P X, LAN P F, et al. Multi-cycle laser-driven broadband supercontinuum with a modulated polarization gating [J]. Optics Express, 2008, 16(13): 9795-9803. DOI: 10.1364/OE.16.009795
    [9]
    LIU H, LI Y, YAO Z, FENG L Q. Chirp pulse control on harmonic cutoff and harmonic intensity [J]. Laser Technology, 2017, 41(5): 708-711 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201705018.htm
    [10]
    FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses: Combined chirp effects [J]. Physical Review, 2011, A84(5): 053853. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000010000012000183000001&idtype=cvips&gifs=Yes
    [11]
    FENG L Q. Molecular harmonic extension and enhancement from H2+ ions in the presence of spatially inhomogeneous fields [J]. Physical Review, 2015, A92(5): 053832. DOI: 10.1103/physreva.92.053832
    [12]
    FENG L Q, LI Y. Generation of attosecond pulses from He atom driven by UV-chirped laser beam [J]. Laser Technology, 2019, 43(5): 629-634 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201905008.htm
    [13]
    FENG L Q, CHU T S. Intensity enhancement in attosecond pulse generation [J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1462-1466. DOI: 10.1109/JQE.2012.2207948
    [14]
    FENG L Q, LI Y, MENG F S, et al. High-order harmonic and attosecond pulse generations from Rydberg state driven by the spatially inhomogeneous field [J]. Modern Physics Letters, 2017, B31(4): 1750029. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9e883833f45f00c9b55f3ba27868b81e
    [15]
    LI Y, FENG R L Q, QIAO Y. Improvement of harmonic spectra from superposition of initial state driven by homogeneous and inhomogeneous combined field [J]. Canadian Journal of Physics, 2020, 98(1): 198-209. DOI: 10.1139/cjp-2019-0002
    [16]
    LIU H, LI W L, FENG L Q. Chirp control of multi-photon resonance ionization and charge resonance enhanced ionization on mole-cular harmonic generation [J]. Chemical Physics Letters, 2017, 676(7): 118-123. http://www.sciencedirect.com/science/article/pii/S0009261417302695
    [17]
    FENG L Q, CHU T S. Nuclear signatures on the molecular harmonic emission and the attosecond pulse generation [J]. The Journal of Chemical Physics, 2012, 136(5): 054102. DOI: 10.1063/1.3681165
    [18]
    LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields [J]. Physical Review, 2008, E77(6): 066701. http://www.ncbi.nlm.nih.gov/pubmed/18643391
    [19]
    SONG X H, YANG W F, ZENG Z N, et al. Unipolar half-cycle pulse generation in asymmetrical media with a periodic subwavelength structure [J]. Physical Review, 2010, A82(5): 053821. http://adsabs.harvard.edu/abs/2010PhRvA..82e3821S
    [20]
    LI Y, FENG L Q. Improvement of harmonic cutoff energy and intensity by using chirped-UV combined field [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 738-744 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDXU201906017.htm
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (10) PDF downloads (7) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return