Advanced Search
CHEN Zihao, SUN Wenlei, HUANG Yong, CUI Quanwei. Study on microstructure and properties of laser cladding coating for base superalloy[J]. LASER TECHNOLOGY, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006
Citation: CHEN Zihao, SUN Wenlei, HUANG Yong, CUI Quanwei. Study on microstructure and properties of laser cladding coating for base superalloy[J]. LASER TECHNOLOGY, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006

Study on microstructure and properties of laser cladding coating for base superalloy

More Information
  • Received Date: July 26, 2020
  • Revised Date: August 16, 2020
  • Published Date: July 24, 2021
  • In order to study the microstructure evolution and mechanical properties of laser cladding coatings of high temperature alloy, a nickel-based NiCrFeMo high temperature alloy coating was prepared on the surface of 2Cr25Ni20 heat-resistant austenitic stainless steel using laser cladding technology. The cladding technology prepares a nickel-based NiCrFeMo high-temperature alloy coating on the surface of 2Cr25Ni20 heat-resistant austenitic stainless steel. Scanming electron microscope, X-ray diffraction, energy dispersive spectrometer, micro-hardness tester and other micro-analysis test methods were used to analyze the microstructure morphology, phase types, interface element distribution and segregation, and hardness of each area of the nickel-based superalloy coating. The results show that the bonding position of the base material and the cladding layer to the top of the cladding layer is sequentially generated from a variety of crystal grain morphologies. The Nb and Mo elements diffuse to the substrate under the action of the molten metal liquid convection, and the other elements basically have no diffusion. The cladding layer has phases: γ-Ni and Cr2Fe14C, while the bonding position of the cladding layer contains phases: Fe2Ni3, γ-(Fe, Ni), and Ni0.9Nb0.1. The average microhardness of the substrate is about 252HV0.3, and the average microhardness of the cladding layer is about 285HV0.3. In normal temperature tensile test, compared with the mechanical properties of 2Cr25Ni20 steel, the tensile strength of 2Cr25Ni20 steel repaired parts increases, the strength increases, the elongation after fracture decreases significantly, and the plasticity decreases. Therefore, this study provides a feasible plan for the subsequent repair of the steel furnace shaft.
  • [1]
    LIU B Ch, HUANG T Y. China materials engineering [M]. Beijing: Chemical Industry Press, 2005: 204(in Chinese).
    [2]
    CHEN Sh M. Research on high temperature properties of Al2O3/20Cr25Ni20 composite material or roll [D]. Kunming: Kunming University of Science and Technology, 2013: 5-10(in Chinese).
    [3]
    WANG E Z, XU Y P, BAO Ch G, et al. Preparation of Al2O3 particles/heat-resistant steel composite material and high-temperature abrasive wear properties[J]. Journal of Composite Materials, 2004, 21(1): 56-60(in Chinese). http://www.researchgate.net/publication/289290774_Fabrication_of_Al2O3heat-resistant_steel_composite_and_its_wear-resistance_at_high_temperature_and_abrasive
    [4]
    HAO Y B, WANG J, YANG P, et al. Research on microstructure and properties of laser cladding tin-based babbitt alloy [J]. Chinese Journal of Lasers, 2020, 47(8): 0802009 (in Chinese). DOI: 10.3788/CJL202047.0802009
    [5]
    CHEN Zh J, DING Y M, DONG G, et al. Analysis of microstructure and Cr content of low Cr alloy modified layer prepared by laser cladding on 9%Cr steel [J]. Surface Technology, 2020, 49(2): 281-287(in Chinese).
    [6]
    DONG Sh Y, MA Y Zh, XU B Sh, et al. Research status of laser cladding materials [J]. Material Guide, 2006, 20(6): 10-14(in Chin-ese).
    [7]
    SONG X H, ZOU Y F, XING J K, et al. Performance comparison of 35CrMo laser cladding iron-based alloy and nickel-based alloy coating [J]. Laser Technology, 2015, 39(1): 39-45(in Chinese).
    [8]
    LU H F, PAN Ch Y, QIN E W, et al. Microstructure and properties of laser cladding WC/Ni-based alloy composite coating on 45 steel [J]. Metal Heat Treatment, 2019, 44(12): 19-25(in Chinese).
    [9]
    LIU P L, SUN W L, WANG G D, et al. The effect of scanning rate on the performance of laser cladding nickel-based alloy coating [J]. Laser Technology, 2018, 42(6): 845-848(in Chinese).
    [10]
    DENG D W, SUN J H, WANG X L, et al. Effect of laser power on the structure and properties of laser cladding nickel-based alloy coating [J]. Rare Metals, 2016, 40(1): 20-25(in Chinese).
    [11]
    GONG Ch, WANG L F, ZHU G X, et al. Influence of laser additive manufacturing process parameters on residual stress of cladding layer [J]. Laser Technology, 2019, 43(2): 263-268(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201902021.htm
    [12]
    ZHANG D Q, ZHANG J Q, LI J H, et al. Effect of defocusing amount on laser cladding of self-fluxing Ni-based WC on 45# steel surface[J]. Surface Technology, 2015, 44(12): 92-97(in Chinese). http://www.cqvip.com/QK/93576X/201512/666862706.html
    [13]
    LIU P L, SUN W L, HUANG Y. The effect of temperature gradient on cracks in laser cladding layer [J]. Laser Technology, 2019, 43(3): 392-396(in Chinese).
    [14]
    LI C, WHITE R, FANG X Y, et al. Microstructure evolution characteristics of Inconel625 alloy from selective laser melting to heat treatment[J]. Materials Science & Engineering, 2017, A58(8): 20-31. http://www.sciencedirect.com/science/article/pii/S0921509317310730
    [15]
    PAVITHRA E, SENTHILKUMAR V S. Microstructural evolution of hydroformed Inconel625 bellows[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2016, 669(5): 199-204. http://www.sciencedirect.com/science/article/pii/S092583881630278X
    [16]
    CHUNG K H, RODRIGUEZ R, LAVERNIA E J, et al. Grain growth behavior of cryomilled Inconel625 powder during isothermal heat treatment[J]. Metallurgical & Materials Transactions, 2002, A33(1): 125-134. DOI: 10.1007/s11661-002-0011-y
    [17]
    JEYAPRAKASH N, YANG C H, RAMKUMAR K R. Microstructure and wear resistance of laser cladded Inconel625 and Colmonoy 6 depositions on Inconel625 substrate[J]. Applied Physics, 2020, A126(6): 1-11. DOI: 10.1007/s00339-020-03637-9
    [18]
    XU F J, LV Y H, Y, LIU Y X, et al. Microstructural evolution and mechanical properties of Inconel625 alloy during pulsed plasma arc deposition process[J]. Journal of Materials Science & Technology, 2013, 29(5): 480-488. http://www.sciencedirect.com/science/article/pii/S1005030213000388
    [19]
    WANG X, XU X, GAO Y, et al. Research on microstructures and properties of Inconel625 coatings obtained by laser cladding with wire[J]. Journal of Alloys & Compounds, 2017, 715(8): 362-373. http://smartsearch.nstl.gov.cn/paper_detail.html?id=272a309a021933cde73eeb935e882805
    [20]
    DINDA G P, DASGUPTA A K, MAZUMDER J. Laser aided direct metal deposition of Inconel625 superalloy: Microstructural evolution and thermal stability[J]. Materials Ence and Engineering, 2009, 509(1/2): 98-104. http://www.sciencedirect.com/science/article/pii/S0921509309000215
    [21]
    ROMBOUTS M, MAES G, MERTENS M, et al. Laser metal de-position of Inconel625: Microstructure and mechanical properties[J]. Journal of Laser Applications, 2012, 24(5): 2575-2581. DOI: 10.2351/1.4757717
  • Related Articles

    [1]LIANG Feilong, SHI Wenqing, LI Kaiyue, ZHU Zhikai, WU Teng. Effect of Cu mass fraction on microstructure and properties of laser cladded Ni-Cu-WC coatings[J]. LASER TECHNOLOGY, 2023, 47(5): 653-658. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.012
    [2]WANG Shanshan, SHI Wenqing, WU Teng, CHENG Cai, ZHU Zhikai, CHEN Ximiao, XIE Linyi, HE Kuanfang. Effect of WC mass fraction on microstructure and properties of laser cladding Ni-based coatings[J]. LASER TECHNOLOGY, 2023, 47(4): 463-468. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.004
    [3]PENG Hesi, CHEN Binghua, TANG Jinglong, DENG Shilei, CHEN Gengyu, CHEN Yan. Effect of laser welding technology on mechanical properties of K418 and 0Cr18Ni9 weld joints[J]. LASER TECHNOLOGY, 2018, 42(2): 229-233. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.017
    [4]CHEN Shungao, ZHANG Xiaoming, ZHENG Qichi, LI Ruifeng. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2017, 41(6): 904-908. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.027
    [5]QIU Xing-wu. Microstructure and properties of laser transformation hardening layer on 1Cr18Ni9Ti[J]. LASER TECHNOLOGY, 2011, 35(3): 425-427,432. DOI: 10.3969/j.issn.1001-3806.2011.03.036
    [6]LI Zhi-yuan, ZHAO Wei-yi, ZHANG Jian-bo, NIE Deng-pan, GENG Jia-rui, HE Hao, XUE Tao. Effect of Cr3C2 on microstructure and properties of Fe-based alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2010, 34(5): 591-595. DOI: 10.3969/j.issn.1001-3806.2010.O5.005
    [7]GONG You-pin, LU Wei-yuan, YUAN Xiao-min. Microstructure and properties of TiB2 reinforced Co-based alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2008, 32(2): 122-124.
    [8]SONG Chuan-wang, LI Ming-xi. Effect of nano-CeO2 on the microstructure and properties of laser clad nickel-based alloy coating[J]. LASER TECHNOLOGY, 2006, 30(3): 228-231.
    [9]Si Songhua, Yuan Xiaomin, He Yizhu. Microstructure performance of laser clad Ni-based alloy coating with SiC ceramics particles[J]. LASER TECHNOLOGY, 2002, 26(5): 324-326.
    [10]Zhu Weidong, Liu Qi-bin. Microstructure and properties of broadband laser cladding WCp/Ni base alloy gradient coating[J]. LASER TECHNOLOGY, 2002, 26(3): 183-185.
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (6) PDF downloads (21) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return