Citation: | CHEN Zihao, SUN Wenlei, HUANG Yong, CUI Quanwei. Study on microstructure and properties of laser cladding coating for base superalloy[J]. LASER TECHNOLOGY, 2021, 45(4): 441-447. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.006 |
[1] |
LIU B Ch, HUANG T Y. China materials engineering [M]. Beijing: Chemical Industry Press, 2005: 204(in Chinese).
|
[2] |
CHEN Sh M. Research on high temperature properties of Al2O3/20Cr25Ni20 composite material or roll [D]. Kunming: Kunming University of Science and Technology, 2013: 5-10(in Chinese).
|
[3] |
WANG E Z, XU Y P, BAO Ch G, et al. Preparation of Al2O3 particles/heat-resistant steel composite material and high-temperature abrasive wear properties[J]. Journal of Composite Materials, 2004, 21(1): 56-60(in Chinese). http://www.researchgate.net/publication/289290774_Fabrication_of_Al2O3heat-resistant_steel_composite_and_its_wear-resistance_at_high_temperature_and_abrasive
|
[4] |
HAO Y B, WANG J, YANG P, et al. Research on microstructure and properties of laser cladding tin-based babbitt alloy [J]. Chinese Journal of Lasers, 2020, 47(8): 0802009 (in Chinese). DOI: 10.3788/CJL202047.0802009
|
[5] |
CHEN Zh J, DING Y M, DONG G, et al. Analysis of microstructure and Cr content of low Cr alloy modified layer prepared by laser cladding on 9%Cr steel [J]. Surface Technology, 2020, 49(2): 281-287(in Chinese).
|
[6] |
DONG Sh Y, MA Y Zh, XU B Sh, et al. Research status of laser cladding materials [J]. Material Guide, 2006, 20(6): 10-14(in Chin-ese).
|
[7] |
SONG X H, ZOU Y F, XING J K, et al. Performance comparison of 35CrMo laser cladding iron-based alloy and nickel-based alloy coating [J]. Laser Technology, 2015, 39(1): 39-45(in Chinese).
|
[8] |
LU H F, PAN Ch Y, QIN E W, et al. Microstructure and properties of laser cladding WC/Ni-based alloy composite coating on 45 steel [J]. Metal Heat Treatment, 2019, 44(12): 19-25(in Chinese).
|
[9] |
LIU P L, SUN W L, WANG G D, et al. The effect of scanning rate on the performance of laser cladding nickel-based alloy coating [J]. Laser Technology, 2018, 42(6): 845-848(in Chinese).
|
[10] |
DENG D W, SUN J H, WANG X L, et al. Effect of laser power on the structure and properties of laser cladding nickel-based alloy coating [J]. Rare Metals, 2016, 40(1): 20-25(in Chinese).
|
[11] |
GONG Ch, WANG L F, ZHU G X, et al. Influence of laser additive manufacturing process parameters on residual stress of cladding layer [J]. Laser Technology, 2019, 43(2): 263-268(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201902021.htm
|
[12] |
ZHANG D Q, ZHANG J Q, LI J H, et al. Effect of defocusing amount on laser cladding of self-fluxing Ni-based WC on 45# steel surface[J]. Surface Technology, 2015, 44(12): 92-97(in Chinese). http://www.cqvip.com/QK/93576X/201512/666862706.html
|
[13] |
LIU P L, SUN W L, HUANG Y. The effect of temperature gradient on cracks in laser cladding layer [J]. Laser Technology, 2019, 43(3): 392-396(in Chinese).
|
[14] |
LI C, WHITE R, FANG X Y, et al. Microstructure evolution characteristics of Inconel625 alloy from selective laser melting to heat treatment[J]. Materials Science & Engineering, 2017, A58(8): 20-31. http://www.sciencedirect.com/science/article/pii/S0921509317310730
|
[15] |
PAVITHRA E, SENTHILKUMAR V S. Microstructural evolution of hydroformed Inconel625 bellows[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2016, 669(5): 199-204. http://www.sciencedirect.com/science/article/pii/S092583881630278X
|
[16] |
CHUNG K H, RODRIGUEZ R, LAVERNIA E J, et al. Grain growth behavior of cryomilled Inconel625 powder during isothermal heat treatment[J]. Metallurgical & Materials Transactions, 2002, A33(1): 125-134. DOI: 10.1007/s11661-002-0011-y
|
[17] |
JEYAPRAKASH N, YANG C H, RAMKUMAR K R. Microstructure and wear resistance of laser cladded Inconel625 and Colmonoy 6 depositions on Inconel625 substrate[J]. Applied Physics, 2020, A126(6): 1-11. DOI: 10.1007/s00339-020-03637-9
|
[18] |
XU F J, LV Y H, Y, LIU Y X, et al. Microstructural evolution and mechanical properties of Inconel625 alloy during pulsed plasma arc deposition process[J]. Journal of Materials Science & Technology, 2013, 29(5): 480-488. http://www.sciencedirect.com/science/article/pii/S1005030213000388
|
[19] |
WANG X, XU X, GAO Y, et al. Research on microstructures and properties of Inconel625 coatings obtained by laser cladding with wire[J]. Journal of Alloys & Compounds, 2017, 715(8): 362-373. http://smartsearch.nstl.gov.cn/paper_detail.html?id=272a309a021933cde73eeb935e882805
|
[20] |
DINDA G P, DASGUPTA A K, MAZUMDER J. Laser aided direct metal deposition of Inconel625 superalloy: Microstructural evolution and thermal stability[J]. Materials Ence and Engineering, 2009, 509(1/2): 98-104. http://www.sciencedirect.com/science/article/pii/S0921509309000215
|
[21] |
ROMBOUTS M, MAES G, MERTENS M, et al. Laser metal de-position of Inconel625: Microstructure and mechanical properties[J]. Journal of Laser Applications, 2012, 24(5): 2575-2581. DOI: 10.2351/1.4757717
|
1. |
贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 .
![]() | |
2. |
卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
![]() | |
3. |
李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 .
![]() | |
4. |
石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
![]() | |
5. |
杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
![]() | |
6. |
蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
![]() | |
7. |
晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 .
![]() | |
8. |
陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 .
![]() | |
9. |
胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
![]() | |
10. |
刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .
![]() |