Advanced Search
LÜ Wenjing, LI Honglian, LI Wenduo, LÜ Heshuai, ZHANG Shizhao, FANG Lide. Optimization and experimental research on modulation parameters of TDLAS technology[J]. LASER TECHNOLOGY, 2021, 45(3): 336-343. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.013
Citation: LÜ Wenjing, LI Honglian, LI Wenduo, LÜ Heshuai, ZHANG Shizhao, FANG Lide. Optimization and experimental research on modulation parameters of TDLAS technology[J]. LASER TECHNOLOGY, 2021, 45(3): 336-343. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.013

Optimization and experimental research on modulation parameters of TDLAS technology

More Information
  • Received Date: May 26, 2020
  • Revised Date: June 09, 2020
  • Published Date: May 24, 2021
  • In order to study the effect of laser modulation parameters on the peak, signal-to-noise ratio, peak width, symmetry, and signal integrity of second harmonic signals, the analysis based on the hardware system and the Simulink analogue model were verified that the theoretical simulation results were consistent with the signal variation trend of the hardware system, and at the same time the optimal modulation parameters of the CO2 detection system were determined. Through the experimental system, the absorption spectra of different volume fraction of CO2 at 1432.04nm were measured, the inversion model of the signal intensity at the main absorption peak and CO2 volume fraction was established, and the system performance and measurement accuracy were analyzed. The results show that the linear fitting coefficient R2 is 0.9998, the maximum relative error of gas volume fraction inversion is 0.7333%, and the detection limit of the system is 0.0074%. The ideal second harmonic signal can be obtained through the optimal selection of modulation parameters, so as to achieve accurate inversion of the gas volume fraction to be measured. The study provides an important reference for the optimization of modulation parameters in the detection system and provides guidance for the improvement of the measurement accuracy of the system.
  • [1]
    ZHANG J Q. The research on measurement technology of carbon monoxide gas concentration based on TDLAS[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 19-35(in Chin-ese).
    [2]
    WANG X M. Measurement of CO2 concentration based on TDLAS[D]. Beijing: North China Electric Power University (Beijing), 2017: 1-5(in Chinese).
    [3]
    ZHANG K K. Research on the spectrum absorptive optical gas detection theory and technology[D]. Harbin: Harbin Engineering University, 2012: 26-39(in Chinese).
    [4]
    SUPPLEE J M, WHITTAKER E A, WILFRIED L, et al. Theoretical description of frequency modulation and wavelength modulation spectroscopy[J]. Applied Optics, 1994, 33(27): 6294-6302. http://www.opticsinfobase.org/ao/abstract.cfm?id=41703
    [5]
    KLUCZYNSKI P, AXNER O. Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals[J]. Applied Optics, 1999, 38(27): 5803-5815. DOI: 10.1364/AO.38.005803
    [6]
    WERLE P W, MAZZINGHI P, AMATO F D, et al. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy[J]. Spectrochimica Acta, 2004, A60(2): 1685-1705. http://www.sciencedirect.com/science/article/pii/S138614250300489X
    [7]
    GAO N, DU Zh H, TANG M, et al. System parameters selection and optimization of tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3174-3178(in Chin-ese). http://www.ncbi.nlm.nih.gov/pubmed/21322199
    [8]
    SU M R, LI X L, SUN Q Zh, et al. Simulation and experimental investigation on spectrum absorption of TDLS based CO2 sensor[J]. Instrument Technique and Sensor, 2016(7): 4-7(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YBJS201607002.htm
    [9]
    SHANG H F, DU Zh H, GAO N, et al. Parameter analysis of tunable diode laser absorption spectroscopy based on spectral frequency cha-racteristics[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3359-3364(in Chinese). http://www.researchgate.net/publication/343053512_Parameter_analysis_of_tunable_diode_laser_absorption_spectroscopy_based_on_spectral_frequency_characteristics
    [10]
    ARNDT R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Journal of Applied Physics, 1965, 36(8): 2522-2524. DOI: 10.1063/1.1714523
    [11]
    ZHANG X, CAO Sh Y, GUO T X, et al. Research of methane vo-lume fraction field reconstruction based on tunable diode laser absorption spectroscopy detection technology[J]. Laser Technology, 2018, 42(4): 577-582(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HWJS201806014.htm
    [12]
    ZHAI W, WU Sh Q, DONG Y H, et al. Effect of FM-AM phase difference on the second harmonic lineshape of TDLAS[J]. Laser Technology, 2013, 37(3): 284-288(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201236244403.html
    [13]
    GONG X Ch, GAO Y F, YANG J, et al. Parameter optimization of TDLAS wavelength modulation pressure measurement method[J]. Optical Technique, 2020, 46(2): 134-139(in Chinese).
    [14]
    ALORIFI F, GHALY S M A, SHALABY M Y, et al. Analysis and detection of a target gas system based on TDLAS & LabVIEW[J]. Engineering Technology & Applied Science Research, 2019, 9(3): 4196-4199. http://www.researchgate.net/publication/333666372_Analysis_and_Detection_of_a_Target_Gas_System_Based_on_TDLAS_LabVIEW
    [15]
    LIU X L. The digital signal processing and analysis based on TDLAS[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 58-71(in Chinese).
    [16]
    YUAN Zh G, MA X Zh, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289(in Chin-ese). DOI: 10.3788/co.20201302.0281
    [17]
    LI H, LIU J G, HE Y B, et al. Simulation and analysis of second-harmonic signal based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 881-885(in Chinese). http://www.ingentaconnect.com/content/ssa/ssa/2013/00000033/00000004/art00004?crawler=true
    [18]
    LI C R. The research based on TDLAS to diesel engine SCR ammonia pollution detection system[D]. Tianjin: Tianjin University of Science and Technology, 2017: 31-39(in Chinese).
    [19]
    DONG Y H, WU Sh Q, ZHAI W, et al. Effect of modulated phase difference on TDLAS signal-to-noise ratio[J]. Laser Technology, 2013, 37(4): 498-502(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201236245270.html
    [20]
    YUAN D Ch. Research on fire forest early detection technology based on TDLAS method[D]. Harbin: Northeast Forestry University, 2018: 83-98(in Chinese).
    [21]
    ZHANG B Q, XU Zh Y, LIU J G, et al. Modulation characteristics of laser based on wavelength modulation technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2702-2707(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GUAN201909010.htm
    [22]
    ZHANG Ch X. O2 and CO sensing based on tunable diode laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2010: 47-67(in Chinese).
    [23]
    ZHENG F, QIU X B, SHAO L G, et al. Measurement of nitric oxide from cigarette burning using TDLAS based on quantum cascade laser[J]. Optics and Laser Technology, 2020, 124: 105963. http://www.sciencedirect.com/science/article/pii/S0030399219315555
    [24]
    LI Ch L, WU Y F, QIU X B. Pressure-dependent detection of carbon monoxide employing wavelength modulation spectroscopy using a herriott-type cell[J]. Applied Spectroscopy, 2017, 71(5): 809-816. DOI: 10.1177/0003702816682194
    [25]
    LI Ch L, SHAO L G, JIANG L J, et al. Simultaneous measurements of CO and CO2 employing wavelength modulation spectroscopy using a signal averaging technique at 1.578m[J]. Applied Spectroscopy, 2018, 72(9): 1380-1387. http://europepmc.org/abstract/MED/29693451
  • Related Articles

    [1]LIU Rongzhan. Design and experimental research of blue light homogenization system based on microlens array[J]. LASER TECHNOLOGY, 2024, 48(4): 499-504. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.007
    [2]HU Xuanyu, ZHENG Haoxuan, ZHENG Yi, DUAN Changcheng, XIAO Yu, XU Gang, TANG Xiahui. Research on modularization of 500 W blue semiconductor laser based on beam combination[J]. LASER TECHNOLOGY, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003
    [3]GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]FANG Yaoxin, GUO Baofeng, MA Chao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. LASER TECHNOLOGY, 2019, 43(5): 713-718. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.024
    [6]ZHAO Jianwei, JIANG Xiaowei, FANG Xiaomin, ZHAO Yanjuan, GE Zhengyang. Study on improving the extraction efficiency of blue light LED by metal gratings[J]. LASER TECHNOLOGY, 2019, 43(1): 58-62. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.012
    [7]HU Jiangtao, HUANG Feng, ZHANG Chu, LIU Bingqi, WANG Yuanbo. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. LASER TECHNOLOGY, 2015, 39(4): 492-496. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [8]LI Qiang, LIU Zhe, NAN Bingbing, GU Shuyin. Improved image super-resolution reconstruction based neighbor embedding[J]. LASER TECHNOLOGY, 2015, 39(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [9]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [10]Wang Pengfei, Zhang Dong, LÜ Baida, Sun Yingchun. Recent advances of diode-pumped thin disc-laser[J]. LASER TECHNOLOGY, 2003, 27(6): 551-553,566.
  • Cited by

    Periodical cited type(1)

    1. 周健文,姚纳,赵汗青,张云凡,焦蛟,孙旭,伍波. 大气湍流下超振荡望远成像的理论研究. 激光技术. 2023(01): 115-120 . 本站查看

    Other cited types(0)

Catalog

    Article views (13) PDF downloads (3) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return