Citation: | YAN Yang, HUA Wenshen, ZHANG Yan, CUI Zihao, LIU Xun. An improved method of hyperspectral endmember extraction based on band selection[J]. LASER TECHNOLOGY, 2019, 43(4): 574-578. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.024 |
[1] |
LIU X. Research of camouflage target detection and evaluation in hyperspectral image [D].Shijiazhuang: Mechanical Engineering College, 2014: 1-2(in Chinese).
|
[2] |
SHAO T. Research on target recognition in hyperspectral imagery based on spectral information [D]. Harbin: Harbin Institute of Technology, 2010: 4-7(in Chinese).
|
[3] |
BIONCAS-DIAS J M, PLZAZ A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 2012, 5(2):354-379. DOI: 10.1109/JSTARS.2012.2194696
|
[4] |
IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Total variation regularization for sparse hyperspectral unmixing[J]. IEEE Transaction Geoscience Remote Sensing, 2012, 50(11):4484-4502. DOI: 10.1109/TGRS.2012.2191590
|
[5] |
FAN L, LIN X, ALEXANDER W, et al. Feature extraction for hyperspectral imagery via ensemble localized manifold learning [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2486-2490. DOI: 10.1109/LGRS.2015.2487226
|
[6] |
ZHU G K, HUANG Y C, LEI J S, et al. Unsupervised hyperspectral band selection by dominant set extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):227-619. DOI: 10.1109/TGRS.2015.2453362
|
[7] |
WANG K, QU H M. Anomaly detection method based on improved minimum noise fraction transformation [J]. Laser Technology, 2015, 39(3):381-385(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201503022
|
[8] |
WANG Q, YANG G, ZHANG J F, et al. Unsupervised band selection algorithm combined with K-L divergence and mutual information [J]. Laser Technology, 2018, 42(3):417-421(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201803024
|
[9] |
LI J, YANG M H, WU K J. Band selection based hyperspectral remote sensing image classification [J]. Journal of Geomatics, 2012, 37(2):41-44(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201505047
|
[10] |
YAN Y, HUA W Sh, LIU X, et al. Research of hyperspectral unmixing methods[J].Laser Technology, 2018, 42(5):692-698(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805020
|
[11] |
WINTER M E. N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data[J].Proceedings of the SPIE, 1999, 3753:266-275. DOI: 10.1117/12.366289
|
[12] |
CHANG C I, WU C C, LIU W M. A new growing method for simplex-based endmember extraction algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(10):2804-2819. DOI: 10.1109/TGRS.2006.881803
|
[13] |
WANG L G, DENG L Q, ZHANG J. Endmember selection algorithm based on linear least square support vector machines[J].Spectroscopy and Spectral Analysis, 2010, 30(3): 743-747 (in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201003038
|
[14] |
XIONG W, CHANG C I, WU C C. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction[J].IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2011, 4(3):545-564. DOI: 10.1109/JSTARS.2011.2119466
|
[15] |
CHANG C I, DU Q. Estimation of number of spectrally distinct signal in hyperspectral imagery [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):608-619. DOI: 10.1109/TGRS.2003.819189
|
[16] |
MARTIN G, PLAZA A. Region-based spatial preprocessing for endmember extraction and spectral unmixing [J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 8(4):745-749. DOI: 10.1109/LGRS.2011.2107877
|
[17] |
YAN Y, HUA W Sh, CUI Z H, et al. Classification volume for hyperspectral endmember extraction[J]. Laser Optoelectronics Progress, 2018, 55(9):093004(in Chinese). DOI: 10.3788/LOP
|
[18] |
GENG X, ZHAO Y, WANG F, et al. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis [J]. International Journal of Remote Sensing, 2010, 31(4):1027-1035. DOI: 10.1080/01431160903154283
|
[19] |
GONG W J, DONG A G, HAN X. Band selection algorithm for hyperspectral images based on band index [J]. Laser Technology, 2017, 41(4):507-510(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201704010.htm
|
[20] |
REN X D, LEI W H, GU Y, et al. Improved band selection method for hyperspectral imagery [J]. Computer Science, 2015, 42(11): 162-168(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201804011
|
[21] |
PLAZA A, PABLO M, ROSA P, et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):650-663. DOI: 10.1109/TGRS.2003.820314
|
[22] |
DANIEL C H, CHEIN I C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(3):529-545. DOI: 10.1109/36.911111
|
1. |
朱玲,秦凯,孙雨,李明,赵英俊. 基于深度自编码网络的高光谱影像解混研究. 光谱学与光谱分析. 2023(05): 1508-1516 .
![]() | |
2. |
王俊佟,杨华东. 基于同质区分割的非线性端元提取算法. 半导体光电. 2023(05): 761-766 .
![]() | |
3. |
金椿柏,杨桄,雷岩,吴迪,刘文婧. Relief-F筛选波段的植被伪装揭露研究. 激光技术. 2022(01): 125-128 .
![]() | |
4. |
刘彦君,张贵,王潇,周璀,杨志高,吴鑫,张娟. 基于无人机高光谱影像波段选择的薇甘菊分类. 测绘通报. 2020(04): 34-39+52 .
![]() | |
5. |
李雪,杨蕊,张金凤. 基于稀疏表示的高光谱图像解混算法研究. 激光杂志. 2020(07): 109-112 .
![]() | |
6. |
赵丽莉. 基于数据挖掘的多波段激光数据分类算法研究. 光通信研究. 2020(06): 12-16 .
![]() |