Citation: | YAN Yang, HUA Wenshen, ZHANG Yan, CUI Zihao, LIU Xun. An improved method of hyperspectral endmember extraction based on band selection[J]. LASER TECHNOLOGY, 2019, 43(4): 574-578. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.024 |
[1] |
LIU X. Research of camouflage target detection and evaluation in hyperspectral image [D].Shijiazhuang: Mechanical Engineering College, 2014: 1-2(in Chinese).
|
[2] |
SHAO T. Research on target recognition in hyperspectral imagery based on spectral information [D]. Harbin: Harbin Institute of Technology, 2010: 4-7(in Chinese).
|
[3] |
BIONCAS-DIAS J M, PLZAZ A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 2012, 5(2):354-379. DOI: 10.1109/JSTARS.2012.2194696
|
[4] |
IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Total variation regularization for sparse hyperspectral unmixing[J]. IEEE Transaction Geoscience Remote Sensing, 2012, 50(11):4484-4502. DOI: 10.1109/TGRS.2012.2191590
|
[5] |
FAN L, LIN X, ALEXANDER W, et al. Feature extraction for hyperspectral imagery via ensemble localized manifold learning [J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2486-2490. DOI: 10.1109/LGRS.2015.2487226
|
[6] |
ZHU G K, HUANG Y C, LEI J S, et al. Unsupervised hyperspectral band selection by dominant set extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):227-619. DOI: 10.1109/TGRS.2015.2453362
|
[7] |
WANG K, QU H M. Anomaly detection method based on improved minimum noise fraction transformation [J]. Laser Technology, 2015, 39(3):381-385(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201503022
|
[8] |
WANG Q, YANG G, ZHANG J F, et al. Unsupervised band selection algorithm combined with K-L divergence and mutual information [J]. Laser Technology, 2018, 42(3):417-421(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201803024
|
[9] |
LI J, YANG M H, WU K J. Band selection based hyperspectral remote sensing image classification [J]. Journal of Geomatics, 2012, 37(2):41-44(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201505047
|
[10] |
YAN Y, HUA W Sh, LIU X, et al. Research of hyperspectral unmixing methods[J].Laser Technology, 2018, 42(5):692-698(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805020
|
[11] |
WINTER M E. N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data[J].Proceedings of the SPIE, 1999, 3753:266-275. DOI: 10.1117/12.366289
|
[12] |
CHANG C I, WU C C, LIU W M. A new growing method for simplex-based endmember extraction algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(10):2804-2819. DOI: 10.1109/TGRS.2006.881803
|
[13] |
WANG L G, DENG L Q, ZHANG J. Endmember selection algorithm based on linear least square support vector machines[J].Spectroscopy and Spectral Analysis, 2010, 30(3): 743-747 (in Ch-inese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201003038
|
[14] |
XIONG W, CHANG C I, WU C C. Fast algorithms to implement N-FINDR for hyperspectral endmember extraction[J].IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2011, 4(3):545-564. DOI: 10.1109/JSTARS.2011.2119466
|
[15] |
CHANG C I, DU Q. Estimation of number of spectrally distinct signal in hyperspectral imagery [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):608-619. DOI: 10.1109/TGRS.2003.819189
|
[16] |
MARTIN G, PLAZA A. Region-based spatial preprocessing for endmember extraction and spectral unmixing [J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 8(4):745-749. DOI: 10.1109/LGRS.2011.2107877
|
[17] |
YAN Y, HUA W Sh, CUI Z H, et al. Classification volume for hyperspectral endmember extraction[J]. Laser Optoelectronics Progress, 2018, 55(9):093004(in Chinese). DOI: 10.3788/LOP
|
[18] |
GENG X, ZHAO Y, WANG F, et al. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis [J]. International Journal of Remote Sensing, 2010, 31(4):1027-1035. DOI: 10.1080/01431160903154283
|
[19] |
GONG W J, DONG A G, HAN X. Band selection algorithm for hyperspectral images based on band index [J]. Laser Technology, 2017, 41(4):507-510(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201704010.htm
|
[20] |
REN X D, LEI W H, GU Y, et al. Improved band selection method for hyperspectral imagery [J]. Computer Science, 2015, 42(11): 162-168(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-gx201804011
|
[21] |
PLAZA A, PABLO M, ROSA P, et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):650-663. DOI: 10.1109/TGRS.2003.820314
|
[22] |
DANIEL C H, CHEIN I C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J]. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(3):529-545. DOI: 10.1109/36.911111
|
[1] | PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013 |
[2] | TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019 |
[3] | PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013 |
[4] | WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024 |
[5] | ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023 |
[6] | WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013 |
[7] | WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023 |
[8] | WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019 |
[9] | YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028 |
[10] | Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178. |