Citation: | CHEN Liang, YOU Libing, WANG Qingsheng, YIN Guangyue, CHU Zhuangzhuang, FANG Xiaodong. Application and development of UV laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(5): 619-625. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.001 |
[1] |
SHAO Y, ZHANG Y B, GAO X, et al. Latest research on and applications progress in laser-induced breakdown spectroscopy[J].Spectroscopy and Spectral Analysis, 2013, 13(10):2593-2598(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201310001
|
[2] |
RUSSO R E. Laser-ablation[J]. Applied Spectroscopy, 1995, 49(9):A14-A28. DOI: 10.1366/0003702953965399
|
[3] |
CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, West Sussex, U K:John Wiley & Sons, Ltd, 2013:23-50.
|
[4] |
RADZIEMSK I, CREMERS L D. A brief history of laser-induced breakdown spectroscopy:from the concept of atoms to LIBS 2012[J]. Spectrochimica Acta, 2013, B87(9):3-10. http://www.sciencedirect.com/science/article/pii/S058485471300116X
|
[5] |
CHEN N, LIU Y X, DU Sh Zh, et al. Research progress in application of nanosecond and femtsecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5):050003(in Chinese).
|
[6] |
MUSAZZI S, PERINI U. Laser-induced breakdown spectroscopy theory and applications[M].Boca Raton, USA:Springer Series in Optical Sciences, 2014:3-28.
|
[7] |
WAN X, WANG P. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2014, 68(10):1132-1136. DOI: 10.1366/13-07203
|
[8] |
MULTARI R A, CREMERS D A, DUPRE J A M, et al. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(36):8687-8694. DOI: 10.1021/jf4029317
|
[9] |
CONNORS B A, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5):810-815. DOI: 10.1177/0003702816638247
|
[10] |
DACEY G C. Optical masers in science and technology[J]. Science, 1962, 135(3498):71-74. DOI: 10.1126/science.135.3498.71
|
[11] |
BAUDELET M, SMITH B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5):624-629. DOI: 10.1039/c3ja50027f
|
[12] |
ANON. Lasers boost spectrograph utility[N]. Chemical & Engineering News Archive, 1962, 40(36a):52.
|
[13] |
CREMERS D A, RADZIEMSKI J. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry[J]. Analytical Chemistry, 1983, 55(8):1252-1256. DOI: 10.1021/ac00259a017
|
[14] |
MAURICE S, CLEGG S M, WIENS R C, et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4):863-889. DOI: 10.1039/C5JA00417A
|
[15] |
HARMON R S, de LUCIA F C, MIZIOLEK A W, et al. Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis[J].Geochemistry Exploration Environment Analysis, 2005, 5(1):21-28. DOI: 10.1144/1467-7873/03-059
|
[16] |
AMORUSO S, ARMENANTE M, BERARDI V, et al. Absorption and saturation mechanisms in aluminium laser ablated plasmas[J]. Applied Physics, 1997, A65(3):265-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2440c7b664b9860db675ff3968d63d87
|
[17] |
RUSSO R E, MAO X L, BORISOV O V, et al. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(9):1115-1120. DOI: 10.1039/b004243i
|
[18] |
SONG K, LEE Y I, SNEDDON J. Recent developments in instrumentation for laser induced breakdown spectroscopy[J]. Applied Spectroscopy Reviews, 2002, 37(1):89-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1081/ASR-120004896
|
[19] |
FORNARINI L, FANTONI R, COLAO F, et al. Theoretical modeling of laser ablation of quaternary bronze alloys:case studies comparing femtosecond and nanosecond LIBS experimental data[J]. Journal of Physical Chemistry, 2009, A113(52):14364-14374. http://www.ncbi.nlm.nih.gov/pubmed/19817368
|
[20] |
GEERTSEN C, BRIAND A, CHARTIER F, et al. Comparison between infrared and ultraviolet-laser ablation at atmospheric-pressure-implications for solid sampling inductively-coupled plasma spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(1):17-22. DOI: 10.1039/JA9940900017
|
[21] |
LI X W, WANG Zh, FU Y T, et al. Wavelength dependence in the analysis of carbon content in coal by nanosecond 266nm and 1064nm laser induced breakdown spectroscopy[J]. Plasma Science & Technology, 2015, 17(8):621-624. http://www.cqvip.com/QK/84262X/201508/665672320.html
|
[22] |
GRAVEL J F Y, BOUDREAU D. Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases[J]. Spectrochimica Acta, 2009, B64(1):56-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47f61ec151f080d976bcea5d70bec5ab
|
[23] |
WANG X, MOTTO-ROS V, PANCZER G, et al. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2013, B87:139-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b25e101cf0e34327012cddd400a20439
|
[24] |
KASEM M A, GONZALEZ J J, RUSSO R E, et al. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone[J]. Spectrochimica Acta, 2014, B101:26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b44aff8c525974e0c2698bc34a6a040
|
[25] |
NG C W, CHEUNG N H. Detection of sodium and potassium in single human red blood cells by 193nm laser ablative sampling:A feasibility demonstration[J]. Analytical Chemistry, 2000, 72(1):247-250. DOI: 10.1021/ac9908795
|
[26] |
LOEBE K, UHL A, LUCHT H. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30):6166-6173. DOI: 10.1364/AO.42.006166
|
[27] |
PALOMAR T M, OUJJA M, GARCIA-HERAS M, et al. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses[J]. Spectrochimica Acta, 2013, B87:114-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6075026df2e4bfcf5a27cbefc1c007a0
|
[28] |
HEDWIG R, BUDI W S, ABDULMADJID S N, et al. Film analysis employing subtarget effect using 355nm Nd-YAG laser-induced plasma at low pressure[J]. Spectrochimica Acta, 2006, B61(12):1285-1293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0920ced304c455e5765cbd0ec0c5cbd6
|
[29] |
BAUDELET M, BOUERI M, YU J, et al. Correlation between early-stage expansion and spectral emission of a nanosecond laser-induced plasma from organic material[J]. Proceddings of the SPIE, 2008, 70050:70050J. http://spie.org/x648.xml?product_id=785218
|
[30] |
LIU K, WANG Q Q, ZHAO H, et al. Differentiation of plastic with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1171-1174(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201105004
|
[31] |
PARVIN P, SHOURSHEINI S Z, KHALILINEJAD F, et al. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser[J]. Optics and Lasers in Engineering, 2012, 50(11):1672-1676. DOI: 10.1016/j.optlaseng.2012.03.015
|
[32] |
LIU X Y, WANG Zh Y, HAO L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200802001
|
[33] |
GONDAL M A, SHEMIS M A, KHALIL A A I, et al. Laser produced plasma diagnosis of carcinogenic heavy metals in gallstones[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2):506-514. DOI: 10.1039/C5JA00358J
|
[34] |
KHALIL A A I, GONDAL M A, SHEMIS M, et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy[J]. Applied Optics, 2015, 54(8):2123-2131. DOI: 10.1364/AO.54.002123
|
[35] |
BONTA M, GONZALEZ J J, QUARLES C D, et al. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1):252-258. DOI: 10.1039/C5JA00287G
|
[36] |
BAUDELET M, BOUERI M, YU J, et al. Laser ablation of organic materials for discrimination of bacteria in an inorganic background[J]. Proceedings of the SPIE, 2009, 7214:2271-2282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210511345
|
[37] |
BELL C R, BARNETT C, PILLAI S, et al. Detection of salmonella from food using uv-laser induced breakdown spectroscopy[J]. Biophysical Journal, 2011, 100(3):488a. http://www.sciencedirect.com/science/article/pii/S0006349510043638
|
[38] |
MEHDER A O, GONDAL M A, DASTAGEER M A, et al. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy[J]. Journal of Environmental Science and Health, 2016, B51(6):358-365. http://www.ncbi.nlm.nih.gov/pubmed/26950676
|
[39] |
ZHANG D C, MA X W, WEN W Q, et al. Influence of laser wavelength on laser-induced breakdown spectroscopy applied to semi-quantitative analysis of trace-elements in a plant sample[J]. Chinese Physics Letters, 2010, 27(6):063202. DOI: 10.1088/0256-307X/27/6/063202
|
[40] |
GONDAL M A, BAIG U, DASTAGEER M A, et al. Determination of elemental composition of coffee using uv-pulsed laser induced breakdown spectroscopy[C]//Proceedings of the Fifth Saudi International Meeting on Frontiers of Physics(SIMFP2016). New York, USA: AIP Publishing, 2016: 030007.
|
[41] |
MEHDER A O, HABIBULLAH Y B, GONDAL M A, et al. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry[J]. Talanta, 2016, 155:124-132. DOI: 10.1016/j.talanta.2016.04.036
|
[42] |
GONDAL M A, HABIBULLAH Y B, BAIG U, et al. Direct spectral analysis of tea samples using 266nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 2016, 152:341-352. DOI: 10.1016/j.talanta.2016.02.030
|
[43] |
ROBERT P, FABRE C, DUBESSY J, et al. Optimization of micro-laser induced breakdown spectroscopy analysis and signal processing[J]. Spectrochimica Acta, 2008, B63(10):1109-1116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ce00ceeaacc8c9c61757c0a0444d139
|
[44] |
CHEN Z J, GODWAL Y, TSUI Y Y, et al. Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates[J]. Applied Optics, 2010, 49(13):C87-C94. DOI: 10.1364/AO.49.000C87
|
[45] |
MATEO M P, NICOLASA G, YANE Z. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations[J]. Applied Surface Science, 2007, 254(4):868-872. DOI: 10.1016/j.apsusc.2007.08.043
|
[46] |
POPOV A M, KOZHNOV M O, ZAYTSEV S M, et al. Enhanced sensitivity of direct beryllium determination in soil by laser-induced breakdown spectrometry[J]. Journal of Applied Spectroscopy, 2015, 82(5):739-743. DOI: 10.1007/s10812-015-0173-1
|
[47] |
LI X W, MAO X L, WANG Z, et al. Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation[J]. Plasma Science & Technology, 2015, 17(11):928-932. http://d.old.wanfangdata.com.cn/Periodical/dlztkxyjs-e201511007
|
[1] | YU Yang, WU Rui, LAN Zhigao. Quantitative study of brass based on calibration-free laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2024, 48(3): 373-378. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.012 |
[2] | GE Yifan, LU Xu, LIU Yuzhu. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. LASER TECHNOLOGY, 2022, 46(4): 532-537. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.015 |
[3] | CUI Zuwen, XIANG Yulin, ZHANG Yuxuan, WU Yulan, HE Yu, LIU Zuoye, SUN Shaohua. Quantitative study on uranium in uranyl solution by laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2021, 45(3): 331-335. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.012 |
[4] | HAO Xiaojian, REN Long, YANG Yanwei, SUN Yongkai. Quantitative analysis of carbon in coal based on laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2020, 44(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.017 |
[5] | LI Jiangtao, LU Cuiping, SHA Wen. Quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2019, 43(5): 601-607. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.003 |
[6] | YU Yang, ZHAO Nanjing, WANG Yin, FANG Li, MENG Deshuo, HU Li, MA Mingjun, LIU Jianguo. Quantitative retrieval research of Pb in lead slime by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2015, 39(4): 537-540. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.024 |
[7] | WANG Shaolong, WANG Yang'en, CHEN Qi, CHEN Shanjun. Quantitative analysis of metal elements in crude oil by means of laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2015, 39(1): 104-108. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.021 |
[8] | WANG Zhao-bing, LIU Tao, HAO Dian-zhong, PENG Han-dong, ZHANG Xia, WU Wen-di. Spectral analysis of colored calcite crystal[J]. LASER TECHNOLOGY, 2008, 32(6): 596-597,604. |
[9] | LIU Xian-yun, WANG Zhen-ya, HAO Li-qing, ZHAO Wen-wu, HUANG Ming-qiang, LONG Bo, ZHANG Wei-jun. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. LASER TECHNOLOGY, 2008, 32(2): 134-136. |
[10] | Kong Weijin, Wu Fuquan, Yun Maojin, Li Guohua. The ultraviolet band spectrochemical analysis of iceland crystal material[J]. LASER TECHNOLOGY, 2003, 27(3): 214-215. |
1. |
成晋军,张晓娟,樊东燕. 实验室投影融合设备的红外辐射光谱检测方法. 激光杂志. 2021(07): 37-40 .
![]() | |
2. |
聂丰英,吴丽华. 车载红外热成像图像处理系统的构建. 激光杂志. 2020(07): 123-127 .
![]() |