Advanced Search
CHEN Liang, YOU Libing, WANG Qingsheng, YIN Guangyue, CHU Zhuangzhuang, FANG Xiaodong. Application and development of UV laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(5): 619-625. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.001
Citation: CHEN Liang, YOU Libing, WANG Qingsheng, YIN Guangyue, CHU Zhuangzhuang, FANG Xiaodong. Application and development of UV laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(5): 619-625. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.001

Application and development of UV laser induced breakdown spectroscopy

More Information
  • Received Date: December 13, 2016
  • Revised Date: December 20, 2016
  • Published Date: September 24, 2017
  • Laser induced breakdown spectroscopy (LIBS) is an element analysis technique based on atomic emission spectroscopy and an important research method in the field of elemental analysis. As the excitation source of LIBS analysis, ultra-violet(UV) laser has the advantages of high photon energy and high spatial resolution, so it can effectively improve the ablation efficiency, reduce the fractionation effect and has good application prospects in geological and biological medicine detection. UV laser can also effectively enhance the effect of elemental analysis, and expand the application scope of LIBS technology. The principle and characteristics of ultraviolet LIBS technology were introduced. The application of ultraviolet LIBS technology at home and abroad was discussed. The development trend of ultraviolet LIBS technology was summarized.
  • [1]
    SHAO Y, ZHANG Y B, GAO X, et al. Latest research on and applications progress in laser-induced breakdown spectroscopy[J].Spectroscopy and Spectral Analysis, 2013, 13(10):2593-2598(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201310001
    [2]
    RUSSO R E. Laser-ablation[J]. Applied Spectroscopy, 1995, 49(9):A14-A28. DOI: 10.1366/0003702953965399
    [3]
    CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, West Sussex, U K:John Wiley & Sons, Ltd, 2013:23-50.
    [4]
    RADZIEMSK I, CREMERS L D. A brief history of laser-induced breakdown spectroscopy:from the concept of atoms to LIBS 2012[J]. Spectrochimica Acta, 2013, B87(9):3-10. http://www.sciencedirect.com/science/article/pii/S058485471300116X
    [5]
    CHEN N, LIU Y X, DU Sh Zh, et al. Research progress in application of nanosecond and femtsecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5):050003(in Chinese).
    [6]
    MUSAZZI S, PERINI U. Laser-induced breakdown spectroscopy theory and applications[M].Boca Raton, USA:Springer Series in Optical Sciences, 2014:3-28.
    [7]
    WAN X, WANG P. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2014, 68(10):1132-1136. DOI: 10.1366/13-07203
    [8]
    MULTARI R A, CREMERS D A, DUPRE J A M, et al. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(36):8687-8694. DOI: 10.1021/jf4029317
    [9]
    CONNORS B A, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5):810-815. DOI: 10.1177/0003702816638247
    [10]
    DACEY G C. Optical masers in science and technology[J]. Science, 1962, 135(3498):71-74. DOI: 10.1126/science.135.3498.71
    [11]
    BAUDELET M, SMITH B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5):624-629. DOI: 10.1039/c3ja50027f
    [12]
    ANON. Lasers boost spectrograph utility[N]. Chemical & Engineering News Archive, 1962, 40(36a):52.
    [13]
    CREMERS D A, RADZIEMSKI J. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry[J]. Analytical Chemistry, 1983, 55(8):1252-1256. DOI: 10.1021/ac00259a017
    [14]
    MAURICE S, CLEGG S M, WIENS R C, et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4):863-889. DOI: 10.1039/C5JA00417A
    [15]
    HARMON R S, de LUCIA F C, MIZIOLEK A W, et al. Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis[J].Geochemistry Exploration Environment Analysis, 2005, 5(1):21-28. DOI: 10.1144/1467-7873/03-059
    [16]
    AMORUSO S, ARMENANTE M, BERARDI V, et al. Absorption and saturation mechanisms in aluminium laser ablated plasmas[J]. Applied Physics, 1997, A65(3):265-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2440c7b664b9860db675ff3968d63d87
    [17]
    RUSSO R E, MAO X L, BORISOV O V, et al. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(9):1115-1120. DOI: 10.1039/b004243i
    [18]
    SONG K, LEE Y I, SNEDDON J. Recent developments in instrumentation for laser induced breakdown spectroscopy[J]. Applied Spectroscopy Reviews, 2002, 37(1):89-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1081/ASR-120004896
    [19]
    FORNARINI L, FANTONI R, COLAO F, et al. Theoretical modeling of laser ablation of quaternary bronze alloys:case studies comparing femtosecond and nanosecond LIBS experimental data[J]. Journal of Physical Chemistry, 2009, A113(52):14364-14374. http://www.ncbi.nlm.nih.gov/pubmed/19817368
    [20]
    GEERTSEN C, BRIAND A, CHARTIER F, et al. Comparison between infrared and ultraviolet-laser ablation at atmospheric-pressure-implications for solid sampling inductively-coupled plasma spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(1):17-22. DOI: 10.1039/JA9940900017
    [21]
    LI X W, WANG Zh, FU Y T, et al. Wavelength dependence in the analysis of carbon content in coal by nanosecond 266nm and 1064nm laser induced breakdown spectroscopy[J]. Plasma Science & Technology, 2015, 17(8):621-624. http://www.cqvip.com/QK/84262X/201508/665672320.html
    [22]
    GRAVEL J F Y, BOUDREAU D. Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases[J]. Spectrochimica Acta, 2009, B64(1):56-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47f61ec151f080d976bcea5d70bec5ab
    [23]
    WANG X, MOTTO-ROS V, PANCZER G, et al. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2013, B87:139-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b25e101cf0e34327012cddd400a20439
    [24]
    KASEM M A, GONZALEZ J J, RUSSO R E, et al. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone[J]. Spectrochimica Acta, 2014, B101:26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b44aff8c525974e0c2698bc34a6a040
    [25]
    NG C W, CHEUNG N H. Detection of sodium and potassium in single human red blood cells by 193nm laser ablative sampling:A feasibility demonstration[J]. Analytical Chemistry, 2000, 72(1):247-250. DOI: 10.1021/ac9908795
    [26]
    LOEBE K, UHL A, LUCHT H. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30):6166-6173. DOI: 10.1364/AO.42.006166
    [27]
    PALOMAR T M, OUJJA M, GARCIA-HERAS M, et al. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses[J]. Spectrochimica Acta, 2013, B87:114-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6075026df2e4bfcf5a27cbefc1c007a0
    [28]
    HEDWIG R, BUDI W S, ABDULMADJID S N, et al. Film analysis employing subtarget effect using 355nm Nd-YAG laser-induced plasma at low pressure[J]. Spectrochimica Acta, 2006, B61(12):1285-1293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0920ced304c455e5765cbd0ec0c5cbd6
    [29]
    BAUDELET M, BOUERI M, YU J, et al. Correlation between early-stage expansion and spectral emission of a nanosecond laser-induced plasma from organic material[J]. Proceddings of the SPIE, 2008, 70050:70050J. http://spie.org/x648.xml?product_id=785218
    [30]
    LIU K, WANG Q Q, ZHAO H, et al. Differentiation of plastic with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1171-1174(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201105004
    [31]
    PARVIN P, SHOURSHEINI S Z, KHALILINEJAD F, et al. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser[J]. Optics and Lasers in Engineering, 2012, 50(11):1672-1676. DOI: 10.1016/j.optlaseng.2012.03.015
    [32]
    LIU X Y, WANG Zh Y, HAO L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200802001
    [33]
    GONDAL M A, SHEMIS M A, KHALIL A A I, et al. Laser produced plasma diagnosis of carcinogenic heavy metals in gallstones[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2):506-514. DOI: 10.1039/C5JA00358J
    [34]
    KHALIL A A I, GONDAL M A, SHEMIS M, et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy[J]. Applied Optics, 2015, 54(8):2123-2131. DOI: 10.1364/AO.54.002123
    [35]
    BONTA M, GONZALEZ J J, QUARLES C D, et al. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1):252-258. DOI: 10.1039/C5JA00287G
    [36]
    BAUDELET M, BOUERI M, YU J, et al. Laser ablation of organic materials for discrimination of bacteria in an inorganic background[J]. Proceedings of the SPIE, 2009, 7214:2271-2282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210511345
    [37]
    BELL C R, BARNETT C, PILLAI S, et al. Detection of salmonella from food using uv-laser induced breakdown spectroscopy[J]. Biophysical Journal, 2011, 100(3):488a. http://www.sciencedirect.com/science/article/pii/S0006349510043638
    [38]
    MEHDER A O, GONDAL M A, DASTAGEER M A, et al. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy[J]. Journal of Environmental Science and Health, 2016, B51(6):358-365. http://www.ncbi.nlm.nih.gov/pubmed/26950676
    [39]
    ZHANG D C, MA X W, WEN W Q, et al. Influence of laser wavelength on laser-induced breakdown spectroscopy applied to semi-quantitative analysis of trace-elements in a plant sample[J]. Chinese Physics Letters, 2010, 27(6):063202. DOI: 10.1088/0256-307X/27/6/063202
    [40]
    GONDAL M A, BAIG U, DASTAGEER M A, et al. Determination of elemental composition of coffee using uv-pulsed laser induced breakdown spectroscopy[C]//Proceedings of the Fifth Saudi International Meeting on Frontiers of Physics(SIMFP2016). New York, USA: AIP Publishing, 2016: 030007.
    [41]
    MEHDER A O, HABIBULLAH Y B, GONDAL M A, et al. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry[J]. Talanta, 2016, 155:124-132. DOI: 10.1016/j.talanta.2016.04.036
    [42]
    GONDAL M A, HABIBULLAH Y B, BAIG U, et al. Direct spectral analysis of tea samples using 266nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 2016, 152:341-352. DOI: 10.1016/j.talanta.2016.02.030
    [43]
    ROBERT P, FABRE C, DUBESSY J, et al. Optimization of micro-laser induced breakdown spectroscopy analysis and signal processing[J]. Spectrochimica Acta, 2008, B63(10):1109-1116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ce00ceeaacc8c9c61757c0a0444d139
    [44]
    CHEN Z J, GODWAL Y, TSUI Y Y, et al. Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates[J]. Applied Optics, 2010, 49(13):C87-C94. DOI: 10.1364/AO.49.000C87
    [45]
    MATEO M P, NICOLASA G, YANE Z. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations[J]. Applied Surface Science, 2007, 254(4):868-872. DOI: 10.1016/j.apsusc.2007.08.043
    [46]
    POPOV A M, KOZHNOV M O, ZAYTSEV S M, et al. Enhanced sensitivity of direct beryllium determination in soil by laser-induced breakdown spectrometry[J]. Journal of Applied Spectroscopy, 2015, 82(5):739-743. DOI: 10.1007/s10812-015-0173-1
    [47]
    LI X W, MAO X L, WANG Z, et al. Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation[J]. Plasma Science & Technology, 2015, 17(11):928-932. http://d.old.wanfangdata.com.cn/Periodical/dlztkxyjs-e201511007
  • Related Articles

    [1]YU Yang, WU Rui, LAN Zhigao. Quantitative study of brass based on calibration-free laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2024, 48(3): 373-378. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.012
    [2]GE Yifan, LU Xu, LIU Yuzhu. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. LASER TECHNOLOGY, 2022, 46(4): 532-537. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.015
    [3]CUI Zuwen, XIANG Yulin, ZHANG Yuxuan, WU Yulan, HE Yu, LIU Zuoye, SUN Shaohua. Quantitative study on uranium in uranyl solution by laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2021, 45(3): 331-335. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.012
    [4]HAO Xiaojian, REN Long, YANG Yanwei, SUN Yongkai. Quantitative analysis of carbon in coal based on laser-induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2020, 44(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.017
    [5]LI Jiangtao, LU Cuiping, SHA Wen. Quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2019, 43(5): 601-607. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.003
    [6]YU Yang, ZHAO Nanjing, WANG Yin, FANG Li, MENG Deshuo, HU Li, MA Mingjun, LIU Jianguo. Quantitative retrieval research of Pb in lead slime by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2015, 39(4): 537-540. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.024
    [7]WANG Shaolong, WANG Yang'en, CHEN Qi, CHEN Shanjun. Quantitative analysis of metal elements in crude oil by means of laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2015, 39(1): 104-108. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.021
    [8]WANG Zhao-bing, LIU Tao, HAO Dian-zhong, PENG Han-dong, ZHANG Xia, WU Wen-di. Spectral analysis of colored calcite crystal[J]. LASER TECHNOLOGY, 2008, 32(6): 596-597,604.
    [9]LIU Xian-yun, WANG Zhen-ya, HAO Li-qing, ZHAO Wen-wu, HUANG Ming-qiang, LONG Bo, ZHANG Wei-jun. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. LASER TECHNOLOGY, 2008, 32(2): 134-136.
    [10]Kong Weijin, Wu Fuquan, Yun Maojin, Li Guohua. The ultraviolet band spectrochemical analysis of iceland crystal material[J]. LASER TECHNOLOGY, 2003, 27(3): 214-215.
  • Cited by

    Periodical cited type(2)

    1. 成晋军,张晓娟,樊东燕. 实验室投影融合设备的红外辐射光谱检测方法. 激光杂志. 2021(07): 37-40 .
    2. 聂丰英,吴丽华. 车载红外热成像图像处理系统的构建. 激光杂志. 2020(07): 123-127 .

    Other cited types(0)

Catalog

    Article views (6) PDF downloads (25) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return